/* * Java port of Bullet (c) 2008 Martin Dvorak <jezek2@advel.cz> * * This source file is part of GIMPACT Library. * * For the latest info, see http://gimpact.sourceforge.net/ * * Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371. * email: projectileman@yahoo.com * * This software is provided 'as-is', without any express or implied warranty. * In no event will the authors be held liable for any damages arising from * the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ package com.bulletphysics.extras.gimpact; import com.bulletphysics.BulletGlobals; import com.bulletphysics.linearmath.VectorUtil; import com.bulletphysics.util.Stack; import javax.vecmath.Vector3f; import javax.vecmath.Vector4f; /** * * @author jezek2 */ class GeometryOperations { public static final float PLANEDIREPSILON = 0.0000001f; public static final float PARALELENORMALS = 0.000001f; public static final float CLAMP(float number, float minval, float maxval) { return (number < minval? minval : (number > maxval? maxval : number)); } /** * Calc a plane from a triangle edge an a normal. */ public static void edge_plane(Vector3f e1, Vector3f e2, Vector3f normal, Vector4f plane) { Stack stack = Stack.enter(); Vector3f planenormal = stack.allocVector3f(); planenormal.sub(e2, e1); planenormal.cross(planenormal, normal); planenormal.normalize(); plane.set(planenormal); plane.w = e2.dot(planenormal); stack.leave(); } /** * Finds the closest point(cp) to (v) on a segment (e1,e2). */ public static void closest_point_on_segment(Vector3f cp, Vector3f v, Vector3f e1, Vector3f e2) { Stack stack = Stack.enter(); Vector3f n = stack.allocVector3f(); n.sub(e2, e1); cp.sub(v, e1); float _scalar = cp.dot(n) / n.dot(n); if (_scalar < 0.0f) { cp = e1; } else if (_scalar > 1.0f) { cp = e2; } else { cp.scaleAdd(_scalar, n, e1); } stack.leave(); } /** * Line plane collision. * * @return -0 if the ray never intersects, -1 if the ray collides in front, -2 if the ray collides in back */ public static int line_plane_collision(Vector4f plane, Vector3f vDir, Vector3f vPoint, Vector3f pout, float[] tparam, float tmin, float tmax) { float _dotdir = VectorUtil.dot3(vDir, plane); if (Math.abs(_dotdir) < PLANEDIREPSILON) { tparam[0] = tmax; return 0; } float _dis = ClipPolygon.distance_point_plane(plane, vPoint); int returnvalue = _dis < 0.0f ? 2 : 1; tparam[0] = -_dis / _dotdir; if (tparam[0] < tmin) { returnvalue = 0; tparam[0] = tmin; } else if (tparam[0] > tmax) { returnvalue = 0; tparam[0] = tmax; } pout.scaleAdd(tparam[0], vDir, vPoint); return returnvalue; } /** * Find closest points on segments. */ public static void segment_collision(Vector3f vA1, Vector3f vA2, Vector3f vB1, Vector3f vB2, Vector3f vPointA, Vector3f vPointB) { Stack stack = Stack.enter(); Vector3f AD = stack.allocVector3f(); AD.sub(vA2, vA1); Vector3f BD = stack.allocVector3f(); BD.sub(vB2, vB1); Vector3f N = stack.allocVector3f(); N.cross(AD, BD); float[] tp = new float[] { N.lengthSquared() }; Vector4f _M = stack.allocVector4f();//plane if (tp[0] < BulletGlobals.SIMD_EPSILON)//ARE PARALELE { // project B over A boolean invert_b_order = false; _M.x = vB1.dot(AD); _M.y = vB2.dot(AD); if (_M.x > _M.y) { invert_b_order = true; //BT_SWAP_NUMBERS(_M[0],_M[1]); _M.x = _M.x + _M.y; _M.y = _M.x - _M.y; _M.x = _M.x - _M.y; } _M.z = vA1.dot(AD); _M.w = vA2.dot(AD); // mid points N.x = (_M.x + _M.y) * 0.5f; N.y = (_M.z + _M.w) * 0.5f; if (N.x < N.y) { if (_M.y < _M.z) { vPointB = invert_b_order ? vB1 : vB2; vPointA = vA1; } else if (_M.y < _M.w) { vPointB = invert_b_order ? vB1 : vB2; closest_point_on_segment(vPointA, vPointB, vA1, vA2); } else { vPointA = vA2; closest_point_on_segment(vPointB, vPointA, vB1, vB2); } } else { if (_M.w < _M.x) { vPointB = invert_b_order ? vB2 : vB1; vPointA = vA2; } else if (_M.w < _M.y) { vPointA = vA2; closest_point_on_segment(vPointB, vPointA, vB1, vB2); } else { vPointB = invert_b_order ? vB1 : vB2; closest_point_on_segment(vPointA, vPointB, vA1, vA2); } } stack.leave(); return; } N.cross(N, BD); _M.set(N.x, N.y, N.z, vB1.dot(N)); // get point A as the plane collision point line_plane_collision(_M, AD, vA1, vPointA, tp, 0f, 1f); /*Closest point on segment*/ vPointB.sub(vPointA, vB1); tp[0] = vPointB.dot(BD); tp[0] /= BD.dot(BD); tp[0] = CLAMP(tp[0], 0.0f, 1.0f); vPointB.scaleAdd(tp[0], BD, vB1); stack.leave(); } }