/** * Copyright 2013 JogAmp Community. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY JogAmp Community ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JogAmp Community OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are those of the * authors and should not be interpreted as representing official policies, either expressed * or implied, of JogAmp Community. */ package com.jogamp.opengl.math; /** * <p> * Functions to convert values to/from the <code>binary16</code> format * specified in <code>IEEE 754 2008</code>. * </p> */ public final class Binary16 { /** * The encoded form of negative infinity <code>-∞</code>. */ public static final char NEGATIVE_INFINITY; /** * The encoded form of positive infinity <code>∞</code>. */ public static final char POSITIVE_INFINITY; /** * The encoded form of positive zero <code>0</code>. */ public static final char POSITIVE_ZERO; /** * The encoded form of negative zero <code>-0</code>. */ public static final char NEGATIVE_ZERO; /** * The <i>bias</i> value used to offset the encoded exponent. A given * exponent <code>e</code> is encoded as <code>{@link #BIAS} + e</code>. */ public static final int BIAS; static { NEGATIVE_INFINITY = 0xFC00; POSITIVE_INFINITY = 0x7C00; POSITIVE_ZERO = 0x0000; NEGATIVE_ZERO = 0x8000; BIAS = 15; } private static final int MASK_SIGN; private static final int MASK_EXPONENT; private static final int MASK_SIGNIFICAND; static { MASK_SIGN = 0x8000; MASK_EXPONENT = 0x7C00; MASK_SIGNIFICAND = 0x03FF; } /** * One possible not-a-number value. */ public static char exampleNaN() { final int n = Binary16.packSetExponentUnbiasedUnchecked(16) | Binary16.packSetSignificandUnchecked(1); final char c = (char) n; return c; } /** * Return <code>true</code> if the given packed <code>binary16</code> value * is infinite. */ public static boolean isInfinite( final char k) { if (Binary16.unpackGetExponentUnbiased(k) == 16) { if (Binary16.unpackGetSignificand(k) == 0) { return true; } } return false; } /** * Return <code>true</code> if the given packed <code>binary16</code> value * is not a number (<code>NaN</code>). */ public static boolean isNaN( final char k) { final int e = Binary16.unpackGetExponentUnbiased(k); final int s = Binary16.unpackGetSignificand(k); return (e == 16) && (s > 0); } /** * <p> * Convert a double precision floating point value to a packed * <code>binary16</code> value. * </p> * <p> * For the following specific cases, the function returns: * </p> * <ul> * <li><code>NaN</code> iff <code>isNaN(k)</code></li> * <li>{@link #POSITIVE_INFINITY} iff * <code>k == {@link Double#POSITIVE_INFINITY}</code></li> * <li>{@link #NEGATIVE_INFINITY} iff * <code>k == {@link Double#NEGATIVE_INFINITY}</code></li> * <li>{@link #NEGATIVE_ZERO} iff <code>k == -0.0</code></li> * <li>{@link #POSITIVE_ZERO} iff <code>k == 0.0</code></li> * </ul> * <p> * Otherwise, the <code>binary16</code> value that most closely represents * <code>k</code> is returned. This may obviously be an infinite value as * the interval of double precision values is far larger than that of the * <code>binary16</code> type. * </p> * * @see #unpackDouble(char) */ public static char packDouble( final double k) { if (Double.isNaN(k)) { return Binary16.exampleNaN(); } if (k == Double.POSITIVE_INFINITY) { return Binary16.POSITIVE_INFINITY; } if (k == Double.NEGATIVE_INFINITY) { return Binary16.NEGATIVE_INFINITY; } if (Double.doubleToLongBits(k) == Binary64.NEGATIVE_ZERO_BITS) { return Binary16.NEGATIVE_ZERO; } if (k == 0.0) { return Binary16.POSITIVE_ZERO; } final long de = Binary64.unpackGetExponentUnbiased(k); final long ds = Binary64.unpackGetSign(k); final long dn = Binary64.unpackGetSignificand(k); final char rsr = Binary16.packSetSignUnchecked((int) ds); /** * Extract the 5 least-significant bits of the exponent. */ final int rem = (int) (de & 0x001F); final char rer = Binary16.packSetExponentUnbiasedUnchecked(rem); /** * Extract the 10 most-significant bits of the significand. */ final long rnm = dn & 0xFFC0000000000L; final long rns = rnm >> 42; final char rnr = Binary16.packSetSignificandUnchecked((int) rns); /** * Combine the results. */ return (char) (rsr | rer | rnr); } /** * <p> * Convert a single precision floating point value to a packed * <code>binary16</code> value. * </p> * <p> * For the following specific cases, the function returns: * </p> * <ul> * <li><code>NaN</code> iff <code>isNaN(k)</code></li> * <li>{@link #POSITIVE_INFINITY} iff * <code>k == {@link Float#POSITIVE_INFINITY}</code></li> * <li>{@link #NEGATIVE_INFINITY} iff * <code>k == {@link Float#NEGATIVE_INFINITY}</code></li> * <li>{@link #NEGATIVE_ZERO} iff <code>k == -0.0</code></li> * <li>{@link #POSITIVE_ZERO} iff <code>k == 0.0</code></li> * </ul> * <p> * Otherwise, the <code>binary16</code> value that most closely represents * <code>k</code> is returned. This may obviously be an infinite value as * the interval of single precision values is far larger than that of the * <code>binary16</code> type. * </p> * * @see #unpackFloat(char) */ public static char packFloat( final float k) { if (Float.isNaN(k)) { return Binary16.exampleNaN(); } if (k == Float.POSITIVE_INFINITY) { return Binary16.POSITIVE_INFINITY; } if (k == Float.NEGATIVE_INFINITY) { return Binary16.NEGATIVE_INFINITY; } if (Float.floatToIntBits(k) == Binary32.NEGATIVE_ZERO_BITS) { return Binary16.NEGATIVE_ZERO; } if (k == 0.0) { return Binary16.POSITIVE_ZERO; } final long de = Binary32.unpackGetExponentUnbiased(k); final long ds = Binary32.unpackGetSign(k); final long dn = Binary32.unpackGetSignificand(k); final char rsr = Binary16.packSetSignUnchecked((int) ds); /** * Extract the 5 least-significant bits of the exponent. */ final int rem = (int) (de & 0x001F); final char rer = Binary16.packSetExponentUnbiasedUnchecked(rem); /** * Extract the 10 most-significant bits of the significand. */ final long rnm = dn & 0x7FE000L; final long rns = rnm >> 13; final char rnr = Binary16.packSetSignificandUnchecked((int) rns); /** * Combine the results. */ return (char) (rsr | rer | rnr); } /** * <p> * Encode the unbiased exponent <code>e</code>. Values should be in the * range <code>[-15, 16]</code> - values outside of this range will be * truncated. * </p> * * @see #unpackGetExponentUnbiased(char) */ public static char packSetExponentUnbiasedUnchecked( final int e) { final int eb = e + Binary16.BIAS; final int es = eb << 10; final int em = es & Binary16.MASK_EXPONENT; return (char) em; } /** * <p> * Encode the significand <code>s</code>. Values should be in the range * <code>[0, 1023]</code>. Values outside of this range will be truncated. * </p> * * @see #unpackGetSignificand(char) */ public static char packSetSignificandUnchecked( final int s) { final int sm = s & Binary16.MASK_SIGNIFICAND; return (char) sm; } /** * <p> * Encode the sign bit <code>s</code>. Values should be in the range * <code>[0, 1]</code>, with <code>0</code> ironically denoting a positive * value. Values outside of this range will be truncated. * </p> * * @see #unpackGetSign(char) */ public static char packSetSignUnchecked( final int s) { final int ss = s << 15; final int sm = ss & Binary16.MASK_SIGN; return (char) sm; } /** * Show the given raw packed <code>binary16</code> value as a string of * binary digits. */ public static String toRawBinaryString( final char k) { final StringBuilder b = new StringBuilder(); int z = k; for (int i = 0; i < 16; ++i) { if ((z & 1) == 1) { b.insert(0, "1"); } else { b.insert(0, "0"); } z >>= 1; } return b.toString(); } /** * <p> * Convert a packed <code>binary16</code> value <code>k</code> to a * double-precision floating point value. * </p> * <p> * The function returns: * </p> * <ul> * <li><code>NaN</code> iff <code>isNaN(k)</code></li> * <li>{@link Double#POSITIVE_INFINITY} iff * <code>k == {@link #POSITIVE_INFINITY}</code></li> * <li>{@link Double#NEGATIVE_INFINITY} iff * <code>k == {@link #NEGATIVE_INFINITY}</code></li> * <li><code>-0.0</code> iff <code>k == {@link #NEGATIVE_ZERO}</code></li> * <li><code>0.0</code> iff <code>k == {@link #POSITIVE_ZERO}</code></li> * <li><code>(-1.0 * n) * (2 ^ e) * 1.s</code>, for the decoded sign * <code>n</code> of <code>k</code>, the decoded exponent <code>e</code> of * <code>k</code>, and the decoded significand <code>s</code> of * <code>k</code>.</li> * </ul> * * @see #packDouble(double) */ public static double unpackDouble( final char k) { if (Binary16.isNaN(k)) { return Double.NaN; } if (k == Binary16.POSITIVE_INFINITY) { return Double.POSITIVE_INFINITY; } if (k == Binary16.NEGATIVE_INFINITY) { return Double.NEGATIVE_INFINITY; } if (k == Binary16.NEGATIVE_ZERO) { return -0.0; } if (k == Binary16.POSITIVE_ZERO) { return 0.0; } final long e = Binary16.unpackGetExponentUnbiased(k); final long s = Binary16.unpackGetSign(k); final long n = Binary16.unpackGetSignificand(k); /** * Shift the sign bit to the position at which it will appear in the * resulting value. */ final long rsr = s << 63; /** * 1. Bias the exponent. * * 2. Shift the result left to the position at which it will appear in the * resulting value. */ final long reb = (e + Binary64.BIAS); final long rer = reb << 52; /** * Shift the significand left to the position at which it will appear in * the resulting value. */ final long rnr = n << 42; return Double.longBitsToDouble(rsr | rer | rnr); } /** * <p> * Convert a packed <code>binary16</code> value <code>k</code> to a * single-precision floating point value. * </p> * <p> * The function returns: * </p> * <ul> * <li><code>NaN</code> iff <code>isNaN(k)</code></li> * <li>{@link Float#POSITIVE_INFINITY} iff * <code>k == {@link #POSITIVE_INFINITY}</code></li> * <li>{@link Float#NEGATIVE_INFINITY} iff * <code>k == {@link #NEGATIVE_INFINITY}</code></li> * <li><code>-0.0</code> iff <code>k == {@link #NEGATIVE_ZERO}</code></li> * <li><code>0.0</code> iff <code>k == {@link #POSITIVE_ZERO}</code></li> * <li><code>(-1.0 * n) * (2 ^ e) * 1.s</code>, for the decoded sign * <code>n</code> of <code>k</code>, the decoded exponent <code>e</code> of * <code>k</code>, and the decoded significand <code>s</code> of * <code>k</code>.</li> * </ul> * * @see #packFloat(float) */ public static float unpackFloat( final char k) { if (Binary16.isNaN(k)) { return Float.NaN; } if (k == Binary16.POSITIVE_INFINITY) { return Float.POSITIVE_INFINITY; } if (k == Binary16.NEGATIVE_INFINITY) { return Float.NEGATIVE_INFINITY; } if (k == Binary16.NEGATIVE_ZERO) { return -0.0f; } if (k == Binary16.POSITIVE_ZERO) { return 0.0f; } final int e = Binary16.unpackGetExponentUnbiased(k); final int s = Binary16.unpackGetSign(k); final int n = Binary16.unpackGetSignificand(k); /** * Shift the sign bit to the position at which it will appear in the * resulting value. */ final int rsr = s << 31; /** * 1. Bias the exponent. * * 2. Shift the result left to the position at which it will appear in the * resulting value. */ final int reb = (e + Binary32.BIAS); final int rer = reb << 23; /** * Shift the significand left to the position at which it will appear in * the resulting value. */ final int rnr = n << 13; return Float.intBitsToFloat(rsr | rer | rnr); } /** * <p> * Extract and unbias the exponent of the given packed <code>binary16</code> * value. * </p> * <p> * The exponent is encoded <i>biased</i> as a number in the range * <code>[0, 31]</code>, with <code>0</code> indicating that the number is * <i>subnormal</i> and <code>[1, 30]</code> denoting the actual exponent * plus {@link #BIAS}. Infinite and <code>NaN</code> values always have an * exponent of <code>31</code>. * </p> * <p> * This function will therefore return: * </p> * <ul> * <li> * <code>0 - {@link #BIAS} = -15</code> iff the input is a <i>subnormal</i> * number.</li> * <li>An integer in the range * <code>[1 - {@link #BIAS}, 30 - {@link #BIAS}] = [-14, 15]</code> iff the * input is a <i>normal</i> number.</li> * <li> * <code>16</code> iff the input is {@link #POSITIVE_INFINITY}, * {@link #NEGATIVE_INFINITY}, or <code>NaN</code>.</li> * </ul> * * @see #packSetExponentUnbiasedUnchecked(int) */ public static int unpackGetExponentUnbiased( final char k) { final int em = k & Binary16.MASK_EXPONENT; final int es = em >> 10; return es - Binary16.BIAS; } /** * Retrieve the sign bit of the given packed <code>binary16</code> value, as * an integer in the range <code>[0, 1]</code>. * * @see Binary16#packSetSignUnchecked(int) */ public static int unpackGetSign( final char k) { return (k & Binary16.MASK_SIGN) >> 15; } /** * <p> * Return the significand of the given packed <code>binary16</code> value as * an integer in the range <code>[0, 1023]</code>. * </p> * * @see Binary16#packSetSignificandUnchecked(int) */ public static int unpackGetSignificand( final char k) { return k & Binary16.MASK_SIGNIFICAND; } private Binary16() { throw new AssertionError("Unreachable code, report this bug!"); } }