/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.ode.sampling; /** {@link StepNormalizer Step normalizer} modes. Determines how the step size * is interpreted. * @see StepNormalizer * @see StepNormalizerBounds * @since 3.0 */ public enum StepNormalizerMode { /** * Steps are fixed increments of the start value. In other words, they * are relative to the start value. * * <p>If the integration start time is t0, then the points handled by * the underlying fixed step size step handler are t0 (depending on * the {@link StepNormalizerBounds bounds settings}), t0+h, t0+2h, ...</p> * * <p>If the integration range is an integer multiple of the step size * (h), then the last point handled will be the end point of the * integration (tend). If not, the last point may be the end point * tend, or it may be a point belonging to the interval [tend - h ; * tend], depending on the {@link StepNormalizerBounds bounds settings}. * </p> * * @see StepNormalizer * @see StepNormalizerBounds */ INCREMENT, /** Steps are multiples of a fixed value. In other words, they are * relative to the first multiple of the step size that is encountered * after the start value. * * <p>If the integration start time is t0, and the first multiple of * the fixed step size that is encountered is t1, then the points * handled by the underlying fixed step size step handler are t0 * (depending on the {@link StepNormalizerBounds bounds settings}), t1, * t1+h, t1+2h, ...</p> * * <p>If the end point of the integration range (tend) is an integer * multiple of the step size (h) added to t1, then the last point * handled will be the end point of the integration (tend). If not, * the last point may be the end point tend, or it may be a point * belonging to the interval [tend - h ; tend], depending on the * {@link StepNormalizerBounds bounds settings}.</p> * * @see StepNormalizer * @see StepNormalizerBounds */ MULTIPLES; }