/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.geometry.euclidean.threed; import java.io.Serializable; import org.apache.commons.math3.exception.MathArithmeticException; import org.apache.commons.math3.exception.MathIllegalArgumentException; import org.apache.commons.math3.exception.util.LocalizedFormats; import org.apache.commons.math3.util.FastMath; import org.apache.commons.math3.util.MathArrays; /** * This class implements rotations in a three-dimensional space. * * <p>Rotations can be represented by several different mathematical * entities (matrices, axe and angle, Cardan or Euler angles, * quaternions). This class presents an higher level abstraction, more * user-oriented and hiding this implementation details. Well, for the * curious, we use quaternions for the internal representation. The * user can build a rotation from any of these representations, and * any of these representations can be retrieved from a * <code>Rotation</code> instance (see the various constructors and * getters). In addition, a rotation can also be built implicitly * from a set of vectors and their image.</p> * <p>This implies that this class can be used to convert from one * representation to another one. For example, converting a rotation * matrix into a set of Cardan angles from can be done using the * following single line of code:</p> * <pre> * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ); * </pre> * <p>Focus is oriented on what a rotation <em>do</em> rather than on its * underlying representation. Once it has been built, and regardless of its * internal representation, a rotation is an <em>operator</em> which basically * transforms three dimensional {@link Vector3D vectors} into other three * dimensional {@link Vector3D vectors}. Depending on the application, the * meaning of these vectors may vary and the semantics of the rotation also.</p> * <p>For example in an spacecraft attitude simulation tool, users will often * consider the vectors are fixed (say the Earth direction for example) and the * frames change. The rotation transforms the coordinates of the vector in inertial * frame into the coordinates of the same vector in satellite frame. In this * case, the rotation implicitly defines the relation between the two frames.</p> * <p>Another example could be a telescope control application, where the rotation * would transform the sighting direction at rest into the desired observing * direction when the telescope is pointed towards an object of interest. In this * case the rotation transforms the direction at rest in a topocentric frame * into the sighting direction in the same topocentric frame. This implies in this * case the frame is fixed and the vector moves.</p> * <p>In many case, both approaches will be combined. In our telescope example, * we will probably also need to transform the observing direction in the topocentric * frame into the observing direction in inertial frame taking into account the observatory * location and the Earth rotation, which would essentially be an application of the * first approach.</p> * * <p>These examples show that a rotation is what the user wants it to be. This * class does not push the user towards one specific definition and hence does not * provide methods like <code>projectVectorIntoDestinationFrame</code> or * <code>computeTransformedDirection</code>. It provides simpler and more generic * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p> * * <p>Since a rotation is basically a vectorial operator, several rotations can be * composed together and the composite operation <code>r = r<sub>1</sub> o * r<sub>2</sub></code> (which means that for each vector <code>u</code>, * <code>r(u) = r<sub>1</sub>(r<sub>2</sub>(u))</code>) is also a rotation. Hence * we can consider that in addition to vectors, a rotation can be applied to other * rotations as well (or to itself). With our previous notations, we would say we * can apply <code>r<sub>1</sub></code> to <code>r<sub>2</sub></code> and the result * we get is <code>r = r<sub>1</sub> o r<sub>2</sub></code>. For this purpose, the * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p> * * <p>Rotations are guaranteed to be immutable objects.</p> * * @see Vector3D * @see RotationOrder * @since 1.2 */ public class Rotation implements Serializable { /** Identity rotation. */ public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false); /** Serializable version identifier */ private static final long serialVersionUID = -2153622329907944313L; /** Scalar coordinate of the quaternion. */ private final double q0; /** First coordinate of the vectorial part of the quaternion. */ private final double q1; /** Second coordinate of the vectorial part of the quaternion. */ private final double q2; /** Third coordinate of the vectorial part of the quaternion. */ private final double q3; /** Build a rotation from the quaternion coordinates. * <p>A rotation can be built from a <em>normalized</em> quaternion, * i.e. a quaternion for which q<sub>0</sub><sup>2</sup> + * q<sub>1</sub><sup>2</sup> + q<sub>2</sub><sup>2</sup> + * q<sub>3</sub><sup>2</sup> = 1. If the quaternion is not normalized, * the constructor can normalize it in a preprocessing step.</p> * <p>Note that some conventions put the scalar part of the quaternion * as the 4<sup>th</sup> component and the vector part as the first three * components. This is <em>not</em> our convention. We put the scalar part * as the first component.</p> * @param q0 scalar part of the quaternion * @param q1 first coordinate of the vectorial part of the quaternion * @param q2 second coordinate of the vectorial part of the quaternion * @param q3 third coordinate of the vectorial part of the quaternion * @param needsNormalization if true, the coordinates are considered * not to be normalized, a normalization preprocessing step is performed * before using them */ public Rotation(double q0, double q1, double q2, double q3, boolean needsNormalization) { if (needsNormalization) { // normalization preprocessing double inv = 1.0 / FastMath.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= inv; q1 *= inv; q2 *= inv; q3 *= inv; } this.q0 = q0; this.q1 = q1; this.q2 = q2; this.q3 = q3; } /** Build a rotation from an axis and an angle. * <p>We use the convention that angles are oriented according to * the effect of the rotation on vectors around the axis. That means * that if (i, j, k) is a direct frame and if we first provide +k as * the axis and π/2 as the angle to this constructor, and then * {@link #applyTo(Vector3D) apply} the instance to +i, we will get * +j.</p> * <p>Another way to represent our convention is to say that a rotation * of angle θ about the unit vector (x, y, z) is the same as the * rotation build from quaternion components { cos(-θ/2), * x * sin(-θ/2), y * sin(-θ/2), z * sin(-θ/2) }. * Note the minus sign on the angle!</p> * <p>On the one hand this convention is consistent with a vectorial * perspective (moving vectors in fixed frames), on the other hand it * is different from conventions with a frame perspective (fixed vectors * viewed from different frames) like the ones used for example in spacecraft * attitude community or in the graphics community.</p> * @param axis axis around which to rotate * @param angle rotation angle. * @exception MathIllegalArgumentException if the axis norm is zero */ public Rotation(Vector3D axis, double angle) throws MathIllegalArgumentException { double norm = axis.getNorm(); if (norm == 0) { throw new MathIllegalArgumentException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_AXIS); } double halfAngle = -0.5 * angle; double coeff = FastMath.sin(halfAngle) / norm; q0 = FastMath.cos (halfAngle); q1 = coeff * axis.getX(); q2 = coeff * axis.getY(); q3 = coeff * axis.getZ(); } /** Build a rotation from a 3X3 matrix. * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices * (which are matrices for which m.m<sup>T</sup> = I) with real * coefficients. The module of the determinant of unit matrices is * 1, among the orthogonal 3X3 matrices, only the ones having a * positive determinant (+1) are rotation matrices.</p> * <p>When a rotation is defined by a matrix with truncated values * (typically when it is extracted from a technical sheet where only * four to five significant digits are available), the matrix is not * orthogonal anymore. This constructor handles this case * transparently by using a copy of the given matrix and applying a * correction to the copy in order to perfect its orthogonality. If * the Frobenius norm of the correction needed is above the given * threshold, then the matrix is considered to be too far from a * true rotation matrix and an exception is thrown.<p> * @param m rotation matrix * @param threshold convergence threshold for the iterative * orthogonality correction (convergence is reached when the * difference between two steps of the Frobenius norm of the * correction is below this threshold) * @exception NotARotationMatrixException if the matrix is not a 3X3 * matrix, or if it cannot be transformed into an orthogonal matrix * with the given threshold, or if the determinant of the resulting * orthogonal matrix is negative */ public Rotation(double[][] m, double threshold) throws NotARotationMatrixException { // dimension check if ((m.length != 3) || (m[0].length != 3) || (m[1].length != 3) || (m[2].length != 3)) { throw new NotARotationMatrixException( LocalizedFormats.ROTATION_MATRIX_DIMENSIONS, m.length, m[0].length); } // compute a "close" orthogonal matrix double[][] ort = orthogonalizeMatrix(m, threshold); // check the sign of the determinant double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) - ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) + ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]); if (det < 0.0) { throw new NotARotationMatrixException( LocalizedFormats.CLOSEST_ORTHOGONAL_MATRIX_HAS_NEGATIVE_DETERMINANT, det); } double[] quat = mat2quat(ort); q0 = quat[0]; q1 = quat[1]; q2 = quat[2]; q3 = quat[3]; } /** Build the rotation that transforms a pair of vector into another pair. * <p>Except for possible scale factors, if the instance were applied to * the pair (u<sub>1</sub>, u<sub>2</sub>) it will produce the pair * (v<sub>1</sub>, v<sub>2</sub>).</p> * <p>If the angular separation between u<sub>1</sub> and u<sub>2</sub> is * not the same as the angular separation between v<sub>1</sub> and * v<sub>2</sub>, then a corrected v'<sub>2</sub> will be used rather than * v<sub>2</sub>, the corrected vector will be in the (v<sub>1</sub>, * v<sub>2</sub>) plane.</p> * @param u1 first vector of the origin pair * @param u2 second vector of the origin pair * @param v1 desired image of u1 by the rotation * @param v2 desired image of u2 by the rotation * @exception MathArithmeticException if the norm of one of the vectors is zero, * or if one of the pair is degenerated (i.e. the vectors of the pair are colinear) */ public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) throws MathArithmeticException { // build orthonormalized base from u1, u2 // this fails when vectors are null or colinear, which is forbidden to define a rotation final Vector3D u3 = u1.crossProduct(u2).normalize(); u2 = u3.crossProduct(u1).normalize(); u1 = u1.normalize(); // build an orthonormalized base from v1, v2 // this fails when vectors are null or colinear, which is forbidden to define a rotation final Vector3D v3 = v1.crossProduct(v2).normalize(); v2 = v3.crossProduct(v1).normalize(); v1 = v1.normalize(); // buid a matrix transforming the first base into the second one final double[][] m = new double[][] { { MathArrays.linearCombination(u1.getX(), v1.getX(), u2.getX(), v2.getX(), u3.getX(), v3.getX()), MathArrays.linearCombination(u1.getY(), v1.getX(), u2.getY(), v2.getX(), u3.getY(), v3.getX()), MathArrays.linearCombination(u1.getZ(), v1.getX(), u2.getZ(), v2.getX(), u3.getZ(), v3.getX()) }, { MathArrays.linearCombination(u1.getX(), v1.getY(), u2.getX(), v2.getY(), u3.getX(), v3.getY()), MathArrays.linearCombination(u1.getY(), v1.getY(), u2.getY(), v2.getY(), u3.getY(), v3.getY()), MathArrays.linearCombination(u1.getZ(), v1.getY(), u2.getZ(), v2.getY(), u3.getZ(), v3.getY()) }, { MathArrays.linearCombination(u1.getX(), v1.getZ(), u2.getX(), v2.getZ(), u3.getX(), v3.getZ()), MathArrays.linearCombination(u1.getY(), v1.getZ(), u2.getY(), v2.getZ(), u3.getY(), v3.getZ()), MathArrays.linearCombination(u1.getZ(), v1.getZ(), u2.getZ(), v2.getZ(), u3.getZ(), v3.getZ()) } }; double[] quat = mat2quat(m); q0 = quat[0]; q1 = quat[1]; q2 = quat[2]; q3 = quat[3]; } /** Build one of the rotations that transform one vector into another one. * <p>Except for a possible scale factor, if the instance were * applied to the vector u it will produce the vector v. There is an * infinite number of such rotations, this constructor choose the * one with the smallest associated angle (i.e. the one whose axis * is orthogonal to the (u, v) plane). If u and v are colinear, an * arbitrary rotation axis is chosen.</p> * @param u origin vector * @param v desired image of u by the rotation * @exception MathArithmeticException if the norm of one of the vectors is zero */ public Rotation(Vector3D u, Vector3D v) throws MathArithmeticException { double normProduct = u.getNorm() * v.getNorm(); if (normProduct == 0) { throw new MathArithmeticException(LocalizedFormats.ZERO_NORM_FOR_ROTATION_DEFINING_VECTOR); } double dot = u.dotProduct(v); if (dot < ((2.0e-15 - 1.0) * normProduct)) { // special case u = -v: we select a PI angle rotation around // an arbitrary vector orthogonal to u Vector3D w = u.orthogonal(); q0 = 0.0; q1 = -w.getX(); q2 = -w.getY(); q3 = -w.getZ(); } else { // general case: (u, v) defines a plane, we select // the shortest possible rotation: axis orthogonal to this plane q0 = FastMath.sqrt(0.5 * (1.0 + dot / normProduct)); double coeff = 1.0 / (2.0 * q0 * normProduct); Vector3D q = v.crossProduct(u); q1 = coeff * q.getX(); q2 = coeff * q.getY(); q3 = coeff * q.getZ(); } } /** Build a rotation from three Cardan or Euler elementary rotations. * <p>Cardan rotations are three successive rotations around the * canonical axes X, Y and Z, each axis being used once. There are * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler * rotations are three successive rotations around the canonical * axes X, Y and Z, the first and last rotations being around the * same axis. There are 6 such sets of rotations (XYX, XZX, YXY, * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p> * <p>Beware that many people routinely use the term Euler angles even * for what really are Cardan angles (this confusion is especially * widespread in the aerospace business where Roll, Pitch and Yaw angles * are often wrongly tagged as Euler angles).</p> * @param order order of rotations to use * @param alpha1 angle of the first elementary rotation * @param alpha2 angle of the second elementary rotation * @param alpha3 angle of the third elementary rotation */ public Rotation(RotationOrder order, double alpha1, double alpha2, double alpha3) { Rotation r1 = new Rotation(order.getA1(), alpha1); Rotation r2 = new Rotation(order.getA2(), alpha2); Rotation r3 = new Rotation(order.getA3(), alpha3); Rotation composed = r1.applyTo(r2.applyTo(r3)); q0 = composed.q0; q1 = composed.q1; q2 = composed.q2; q3 = composed.q3; } /** Convert an orthogonal rotation matrix to a quaternion. * @param ort orthogonal rotation matrix * @return quaternion corresponding to the matrix */ private static double[] mat2quat(final double[][] ort) { final double[] quat = new double[4]; // There are different ways to compute the quaternions elements // from the matrix. They all involve computing one element from // the diagonal of the matrix, and computing the three other ones // using a formula involving a division by the first element, // which unfortunately can be zero. Since the norm of the // quaternion is 1, we know at least one element has an absolute // value greater or equal to 0.5, so it is always possible to // select the right formula and avoid division by zero and even // numerical inaccuracy. Checking the elements in turn and using // the first one greater than 0.45 is safe (this leads to a simple // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19) double s = ort[0][0] + ort[1][1] + ort[2][2]; if (s > -0.19) { // compute q0 and deduce q1, q2 and q3 quat[0] = 0.5 * FastMath.sqrt(s + 1.0); double inv = 0.25 / quat[0]; quat[1] = inv * (ort[1][2] - ort[2][1]); quat[2] = inv * (ort[2][0] - ort[0][2]); quat[3] = inv * (ort[0][1] - ort[1][0]); } else { s = ort[0][0] - ort[1][1] - ort[2][2]; if (s > -0.19) { // compute q1 and deduce q0, q2 and q3 quat[1] = 0.5 * FastMath.sqrt(s + 1.0); double inv = 0.25 / quat[1]; quat[0] = inv * (ort[1][2] - ort[2][1]); quat[2] = inv * (ort[0][1] + ort[1][0]); quat[3] = inv * (ort[0][2] + ort[2][0]); } else { s = ort[1][1] - ort[0][0] - ort[2][2]; if (s > -0.19) { // compute q2 and deduce q0, q1 and q3 quat[2] = 0.5 * FastMath.sqrt(s + 1.0); double inv = 0.25 / quat[2]; quat[0] = inv * (ort[2][0] - ort[0][2]); quat[1] = inv * (ort[0][1] + ort[1][0]); quat[3] = inv * (ort[2][1] + ort[1][2]); } else { // compute q3 and deduce q0, q1 and q2 s = ort[2][2] - ort[0][0] - ort[1][1]; quat[3] = 0.5 * FastMath.sqrt(s + 1.0); double inv = 0.25 / quat[3]; quat[0] = inv * (ort[0][1] - ort[1][0]); quat[1] = inv * (ort[0][2] + ort[2][0]); quat[2] = inv * (ort[2][1] + ort[1][2]); } } } return quat; } /** Revert a rotation. * Build a rotation which reverse the effect of another * rotation. This means that if r(u) = v, then r.revert(v) = u. The * instance is not changed. * @return a new rotation whose effect is the reverse of the effect * of the instance */ public Rotation revert() { return new Rotation(-q0, q1, q2, q3, false); } /** Get the scalar coordinate of the quaternion. * @return scalar coordinate of the quaternion */ public double getQ0() { return q0; } /** Get the first coordinate of the vectorial part of the quaternion. * @return first coordinate of the vectorial part of the quaternion */ public double getQ1() { return q1; } /** Get the second coordinate of the vectorial part of the quaternion. * @return second coordinate of the vectorial part of the quaternion */ public double getQ2() { return q2; } /** Get the third coordinate of the vectorial part of the quaternion. * @return third coordinate of the vectorial part of the quaternion */ public double getQ3() { return q3; } /** Get the normalized axis of the rotation. * @return normalized axis of the rotation * @see #Rotation(Vector3D, double) */ public Vector3D getAxis() { double squaredSine = q1 * q1 + q2 * q2 + q3 * q3; if (squaredSine == 0) { return new Vector3D(1, 0, 0); } else if (q0 < 0) { double inverse = 1 / FastMath.sqrt(squaredSine); return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse); } double inverse = -1 / FastMath.sqrt(squaredSine); return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse); } /** Get the angle of the rotation. * @return angle of the rotation (between 0 and π) * @see #Rotation(Vector3D, double) */ public double getAngle() { if ((q0 < -0.1) || (q0 > 0.1)) { return 2 * FastMath.asin(FastMath.sqrt(q1 * q1 + q2 * q2 + q3 * q3)); } else if (q0 < 0) { return 2 * FastMath.acos(-q0); } return 2 * FastMath.acos(q0); } /** Get the Cardan or Euler angles corresponding to the instance. * <p>The equations show that each rotation can be defined by two * different values of the Cardan or Euler angles set. For example * if Cardan angles are used, the rotation defined by the angles * a<sub>1</sub>, a<sub>2</sub> and a<sub>3</sub> is the same as * the rotation defined by the angles π + a<sub>1</sub>, π * - a<sub>2</sub> and π + a<sub>3</sub>. This method implements * the following arbitrary choices:</p> * <ul> * <li>for Cardan angles, the chosen set is the one for which the * second angle is between -π/2 and π/2 (i.e its cosine is * positive),</li> * <li>for Euler angles, the chosen set is the one for which the * second angle is between 0 and π (i.e its sine is positive).</li> * </ul> * <p>Cardan and Euler angle have a very disappointing drawback: all * of them have singularities. This means that if the instance is * too close to the singularities corresponding to the given * rotation order, it will be impossible to retrieve the angles. For * Cardan angles, this is often called gimbal lock. There is * <em>nothing</em> to do to prevent this, it is an intrinsic problem * with Cardan and Euler representation (but not a problem with the * rotation itself, which is perfectly well defined). For Cardan * angles, singularities occur when the second angle is close to * -π/2 or +π/2, for Euler angle singularities occur when the * second angle is close to 0 or π, this implies that the identity * rotation is always singular for Euler angles!</p> * @param order rotation order to use * @return an array of three angles, in the order specified by the set * @exception CardanEulerSingularityException if the rotation is * singular with respect to the angles set specified */ public double[] getAngles(RotationOrder order) throws CardanEulerSingularityException { if (order == RotationOrder.XYZ) { // r (Vector3D.plusK) coordinates are : // sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi) // (-r) (Vector3D.plusI) coordinates are : // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta) // and we can choose to have theta in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_K); Vector3D v2 = applyInverseTo(Vector3D.PLUS_I); if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { FastMath.atan2(-(v1.getY()), v1.getZ()), FastMath.asin(v2.getZ()), FastMath.atan2(-(v2.getY()), v2.getX()) }; } else if (order == RotationOrder.XZY) { // r (Vector3D.plusJ) coordinates are : // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi) // (-r) (Vector3D.plusI) coordinates are : // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi) // and we can choose to have psi in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_J); Vector3D v2 = applyInverseTo(Vector3D.PLUS_I); if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { FastMath.atan2(v1.getZ(), v1.getY()), -FastMath.asin(v2.getY()), FastMath.atan2(v2.getZ(), v2.getX()) }; } else if (order == RotationOrder.YXZ) { // r (Vector3D.plusK) coordinates are : // cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta) // (-r) (Vector3D.plusJ) coordinates are : // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi) // and we can choose to have phi in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_K); Vector3D v2 = applyInverseTo(Vector3D.PLUS_J); if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { FastMath.atan2(v1.getX(), v1.getZ()), -FastMath.asin(v2.getZ()), FastMath.atan2(v2.getX(), v2.getY()) }; } else if (order == RotationOrder.YZX) { // r (Vector3D.plusI) coordinates are : // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta) // (-r) (Vector3D.plusJ) coordinates are : // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi) // and we can choose to have psi in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_I); Vector3D v2 = applyInverseTo(Vector3D.PLUS_J); if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { FastMath.atan2(-(v1.getZ()), v1.getX()), FastMath.asin(v2.getX()), FastMath.atan2(-(v2.getZ()), v2.getY()) }; } else if (order == RotationOrder.ZXY) { // r (Vector3D.plusJ) coordinates are : // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi) // (-r) (Vector3D.plusK) coordinates are : // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi) // and we can choose to have phi in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_J); Vector3D v2 = applyInverseTo(Vector3D.PLUS_K); if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { FastMath.atan2(-(v1.getX()), v1.getY()), FastMath.asin(v2.getY()), FastMath.atan2(-(v2.getX()), v2.getZ()) }; } else if (order == RotationOrder.ZYX) { // r (Vector3D.plusI) coordinates are : // cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta) // (-r) (Vector3D.plusK) coordinates are : // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta) // and we can choose to have theta in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_I); Vector3D v2 = applyInverseTo(Vector3D.PLUS_K); if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { FastMath.atan2(v1.getY(), v1.getX()), -FastMath.asin(v2.getX()), FastMath.atan2(v2.getY(), v2.getZ()) }; } else if (order == RotationOrder.XYX) { // r (Vector3D.plusI) coordinates are : // cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta) // (-r) (Vector3D.plusI) coordinates are : // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2) // and we can choose to have theta in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_I); Vector3D v2 = applyInverseTo(Vector3D.PLUS_I); if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { FastMath.atan2(v1.getY(), -v1.getZ()), FastMath.acos(v2.getX()), FastMath.atan2(v2.getY(), v2.getZ()) }; } else if (order == RotationOrder.XZX) { // r (Vector3D.plusI) coordinates are : // cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi) // (-r) (Vector3D.plusI) coordinates are : // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2) // and we can choose to have psi in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_I); Vector3D v2 = applyInverseTo(Vector3D.PLUS_I); if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { FastMath.atan2(v1.getZ(), v1.getY()), FastMath.acos(v2.getX()), FastMath.atan2(v2.getZ(), -v2.getY()) }; } else if (order == RotationOrder.YXY) { // r (Vector3D.plusJ) coordinates are : // sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi) // (-r) (Vector3D.plusJ) coordinates are : // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2) // and we can choose to have phi in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_J); Vector3D v2 = applyInverseTo(Vector3D.PLUS_J); if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { FastMath.atan2(v1.getX(), v1.getZ()), FastMath.acos(v2.getY()), FastMath.atan2(v2.getX(), -v2.getZ()) }; } else if (order == RotationOrder.YZY) { // r (Vector3D.plusJ) coordinates are : // -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi) // (-r) (Vector3D.plusJ) coordinates are : // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2) // and we can choose to have psi in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_J); Vector3D v2 = applyInverseTo(Vector3D.PLUS_J); if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { FastMath.atan2(v1.getZ(), -v1.getX()), FastMath.acos(v2.getY()), FastMath.atan2(v2.getZ(), v2.getX()) }; } else if (order == RotationOrder.ZXZ) { // r (Vector3D.plusK) coordinates are : // sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi) // (-r) (Vector3D.plusK) coordinates are : // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi) // and we can choose to have phi in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_K); Vector3D v2 = applyInverseTo(Vector3D.PLUS_K); if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { FastMath.atan2(v1.getX(), -v1.getY()), FastMath.acos(v2.getZ()), FastMath.atan2(v2.getX(), v2.getY()) }; } else { // last possibility is ZYZ // r (Vector3D.plusK) coordinates are : // cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta) // (-r) (Vector3D.plusK) coordinates are : // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta) // and we can choose to have theta in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_K); Vector3D v2 = applyInverseTo(Vector3D.PLUS_K); if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { FastMath.atan2(v1.getY(), v1.getX()), FastMath.acos(v2.getZ()), FastMath.atan2(v2.getY(), -v2.getX()) }; } } /** Get the 3X3 matrix corresponding to the instance * @return the matrix corresponding to the instance */ public double[][] getMatrix() { // products double q0q0 = q0 * q0; double q0q1 = q0 * q1; double q0q2 = q0 * q2; double q0q3 = q0 * q3; double q1q1 = q1 * q1; double q1q2 = q1 * q2; double q1q3 = q1 * q3; double q2q2 = q2 * q2; double q2q3 = q2 * q3; double q3q3 = q3 * q3; // create the matrix double[][] m = new double[3][]; m[0] = new double[3]; m[1] = new double[3]; m[2] = new double[3]; m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0; m [1][0] = 2.0 * (q1q2 - q0q3); m [2][0] = 2.0 * (q1q3 + q0q2); m [0][1] = 2.0 * (q1q2 + q0q3); m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0; m [2][1] = 2.0 * (q2q3 - q0q1); m [0][2] = 2.0 * (q1q3 - q0q2); m [1][2] = 2.0 * (q2q3 + q0q1); m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0; return m; } /** Apply the rotation to a vector. * @param u vector to apply the rotation to * @return a new vector which is the image of u by the rotation */ public Vector3D applyTo(Vector3D u) { double x = u.getX(); double y = u.getY(); double z = u.getZ(); double s = q1 * x + q2 * y + q3 * z; return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x, 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y, 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z); } /** Apply the rotation to a vector stored in an array. * @param in an array with three items which stores vector to rotate * @param out an array with three items to put result to (it can be the same * array as in) */ public void applyTo(final double[] in, final double[] out) { final double x = in[0]; final double y = in[1]; final double z = in[2]; final double s = q1 * x + q2 * y + q3 * z; out[0] = 2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x; out[1] = 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y; out[2] = 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z; } /** Apply the inverse of the rotation to a vector. * @param u vector to apply the inverse of the rotation to * @return a new vector which such that u is its image by the rotation */ public Vector3D applyInverseTo(Vector3D u) { double x = u.getX(); double y = u.getY(); double z = u.getZ(); double s = q1 * x + q2 * y + q3 * z; double m0 = -q0; return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x, 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y, 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z); } /** Apply the inverse of the rotation to a vector stored in an array. * @param in an array with three items which stores vector to rotate * @param out an array with three items to put result to (it can be the same * array as in) */ public void applyInverseTo(final double[] in, final double[] out) { final double x = in[0]; final double y = in[1]; final double z = in[2]; final double s = q1 * x + q2 * y + q3 * z; final double m0 = -q0; out[0] = 2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x; out[1] = 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y; out[2] = 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z; } /** Apply the instance to another rotation. * Applying the instance to a rotation is computing the composition * in an order compliant with the following rule : let u be any * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u), * where comp = applyTo(r). * @param r rotation to apply the rotation to * @return a new rotation which is the composition of r by the instance */ public Rotation applyTo(Rotation r) { return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3), r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2), r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3), r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1), false); } /** Apply the inverse of the instance to another rotation. * Applying the inverse of the instance to a rotation is computing * the composition in an order compliant with the following rule : * let u be any vector and v its image by r (i.e. r.applyTo(u) = v), * let w be the inverse image of v by the instance * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where * comp = applyInverseTo(r). * @param r rotation to apply the rotation to * @return a new rotation which is the composition of r by the inverse * of the instance */ public Rotation applyInverseTo(Rotation r) { return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3), -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2), -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3), -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1), false); } /** Perfect orthogonality on a 3X3 matrix. * @param m initial matrix (not exactly orthogonal) * @param threshold convergence threshold for the iterative * orthogonality correction (convergence is reached when the * difference between two steps of the Frobenius norm of the * correction is below this threshold) * @return an orthogonal matrix close to m * @exception NotARotationMatrixException if the matrix cannot be * orthogonalized with the given threshold after 10 iterations */ private double[][] orthogonalizeMatrix(double[][] m, double threshold) throws NotARotationMatrixException { double[] m0 = m[0]; double[] m1 = m[1]; double[] m2 = m[2]; double x00 = m0[0]; double x01 = m0[1]; double x02 = m0[2]; double x10 = m1[0]; double x11 = m1[1]; double x12 = m1[2]; double x20 = m2[0]; double x21 = m2[1]; double x22 = m2[2]; double fn = 0; double fn1; double[][] o = new double[3][3]; double[] o0 = o[0]; double[] o1 = o[1]; double[] o2 = o[2]; // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M) int i = 0; while (++i < 11) { // Mt.Xn double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20; double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20; double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20; double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21; double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21; double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21; double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22; double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22; double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22; // Xn+1 o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]); o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]); o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]); o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]); o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]); o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]); o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]); o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]); o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]); // correction on each elements double corr00 = o0[0] - m0[0]; double corr01 = o0[1] - m0[1]; double corr02 = o0[2] - m0[2]; double corr10 = o1[0] - m1[0]; double corr11 = o1[1] - m1[1]; double corr12 = o1[2] - m1[2]; double corr20 = o2[0] - m2[0]; double corr21 = o2[1] - m2[1]; double corr22 = o2[2] - m2[2]; // Frobenius norm of the correction fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 + corr10 * corr10 + corr11 * corr11 + corr12 * corr12 + corr20 * corr20 + corr21 * corr21 + corr22 * corr22; // convergence test if (FastMath.abs(fn1 - fn) <= threshold) { return o; } // prepare next iteration x00 = o0[0]; x01 = o0[1]; x02 = o0[2]; x10 = o1[0]; x11 = o1[1]; x12 = o1[2]; x20 = o2[0]; x21 = o2[1]; x22 = o2[2]; fn = fn1; } // the algorithm did not converge after 10 iterations throw new NotARotationMatrixException( LocalizedFormats.UNABLE_TO_ORTHOGONOLIZE_MATRIX, i - 1); } /** Compute the <i>distance</i> between two rotations. * <p>The <i>distance</i> is intended here as a way to check if two * rotations are almost similar (i.e. they transform vectors the same way) * or very different. It is mathematically defined as the angle of * the rotation r that prepended to one of the rotations gives the other * one:</p> * <pre> * r<sub>1</sub>(r) = r<sub>2</sub> * </pre> * <p>This distance is an angle between 0 and π. Its value is the smallest * possible upper bound of the angle in radians between r<sub>1</sub>(v) * and r<sub>2</sub>(v) for all possible vectors v. This upper bound is * reached for some v. The distance is equal to 0 if and only if the two * rotations are identical.</p> * <p>Comparing two rotations should always be done using this value rather * than for example comparing the components of the quaternions. It is much * more stable, and has a geometric meaning. Also comparing quaternions * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64) * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite * their components are different (they are exact opposites).</p> * @param r1 first rotation * @param r2 second rotation * @return <i>distance</i> between r1 and r2 */ public static double distance(Rotation r1, Rotation r2) { return r1.applyInverseTo(r2).getAngle(); } }