/* * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ // This file is available under and governed by the GNU General Public // License version 2 only, as published by the Free Software Foundation. // However, the following notice accompanied the original version of this // file: // // Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package jdk.nashorn.internal.runtime.doubleconv; class FixedDtoa { // Represents a 128bit type. This class should be replaced by a native type on // platforms that support 128bit integers. static class UInt128 { private static final long kMask32 = 0xFFFFFFFFL; // Value == (high_bits_ << 64) + low_bits_ private long high_bits_; private long low_bits_; UInt128(final long high_bits, final long low_bits) { this.high_bits_ = high_bits; this.low_bits_ = low_bits; } void multiply(final int multiplicand) { long accumulator; accumulator = (low_bits_ & kMask32) * multiplicand; long part = accumulator & kMask32; accumulator >>>= 32; accumulator = accumulator + (low_bits_ >>> 32) * multiplicand; low_bits_ = (accumulator << 32) + part; accumulator >>>= 32; accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; part = accumulator & kMask32; accumulator >>>= 32; accumulator = accumulator + (high_bits_ >>> 32) * multiplicand; high_bits_ = (accumulator << 32) + part; assert ((accumulator >>> 32) == 0); } void shift(final int shift_amount) { assert (-64 <= shift_amount && shift_amount <= 64); if (shift_amount == 0) { return; } else if (shift_amount == -64) { high_bits_ = low_bits_; low_bits_ = 0; } else if (shift_amount == 64) { low_bits_ = high_bits_; high_bits_ = 0; } else if (shift_amount <= 0) { high_bits_ <<= -shift_amount; high_bits_ += low_bits_ >>> (64 + shift_amount); low_bits_ <<= -shift_amount; } else { low_bits_ >>>= shift_amount; low_bits_ += high_bits_ << (64 - shift_amount); high_bits_ >>>= shift_amount; } } // Modifies *this to *this MOD (2^power). // Returns *this DIV (2^power). int divModPowerOf2(final int power) { if (power >= 64) { final int result = (int) (high_bits_ >>> (power - 64)); high_bits_ -= (long) (result) << (power - 64); return result; } else { final long part_low = low_bits_ >>> power; final long part_high = high_bits_ << (64 - power); final int result = (int) (part_low + part_high); high_bits_ = 0; low_bits_ -= part_low << power; return result; } } boolean isZero() { return high_bits_ == 0 && low_bits_ == 0; } int bitAt(final int position) { if (position >= 64) { return (int) (high_bits_ >>> (position - 64)) & 1; } else { return (int) (low_bits_ >>> position) & 1; } } }; static final int kDoubleSignificandSize = 53; // Includes the hidden bit. static void fillDigits32FixedLength(int number, final int requested_length, final DtoaBuffer buffer) { for (int i = requested_length - 1; i >= 0; --i) { buffer.chars[buffer.length + i] = (char) ('0' + Integer.remainderUnsigned(number, 10)); number = Integer.divideUnsigned(number, 10); } buffer.length += requested_length; } static void fillDigits32(int number, final DtoaBuffer buffer) { int number_length = 0; // We fill the digits in reverse order and exchange them afterwards. while (number != 0) { final int digit = Integer.remainderUnsigned(number, 10); number = Integer.divideUnsigned(number, 10); buffer.chars[buffer.length + number_length] = (char) ('0' + digit); number_length++; } // Exchange the digits. int i = buffer.length; int j = buffer.length + number_length - 1; while (i < j) { final char tmp = buffer.chars[i]; buffer.chars[i] = buffer.chars[j]; buffer.chars[j] = tmp; i++; j--; } buffer.length += number_length; } static void fillDigits64FixedLength(long number, final DtoaBuffer buffer) { final int kTen7 = 10000000; // For efficiency cut the number into 3 uint32_t parts, and print those. final int part2 = (int) Long.remainderUnsigned(number, kTen7); number = Long.divideUnsigned(number, kTen7); final int part1 = (int) Long.remainderUnsigned(number, kTen7); final int part0 = (int) Long.divideUnsigned(number, kTen7); fillDigits32FixedLength(part0, 3, buffer); fillDigits32FixedLength(part1, 7, buffer); fillDigits32FixedLength(part2, 7, buffer); } static void FillDigits64(long number, final DtoaBuffer buffer) { final int kTen7 = 10000000; // For efficiency cut the number into 3 uint32_t parts, and print those. final int part2 = (int) Long.remainderUnsigned(number, kTen7); number = Long.divideUnsigned(number, kTen7); final int part1 = (int) Long.remainderUnsigned(number, kTen7); final int part0 = (int) Long.divideUnsigned(number, kTen7); if (part0 != 0) { fillDigits32(part0, buffer); fillDigits32FixedLength(part1, 7, buffer); fillDigits32FixedLength(part2, 7, buffer); } else if (part1 != 0) { fillDigits32(part1, buffer); fillDigits32FixedLength(part2, 7, buffer); } else { fillDigits32(part2, buffer); } } static void roundUp(final DtoaBuffer buffer) { // An empty buffer represents 0. if (buffer.length == 0) { buffer.chars[0] = '1'; buffer.decimalPoint = 1; buffer.length = 1; return; } // Round the last digit until we either have a digit that was not '9' or until // we reached the first digit. buffer.chars[buffer.length - 1]++; for (int i = buffer.length - 1; i > 0; --i) { if (buffer.chars[i] != '0' + 10) { return; } buffer.chars[i] = '0'; buffer.chars[i - 1]++; } // If the first digit is now '0' + 10, we would need to set it to '0' and add // a '1' in front. However we reach the first digit only if all following // digits had been '9' before rounding up. Now all trailing digits are '0' and // we simply switch the first digit to '1' and update the decimal-point // (indicating that the point is now one digit to the right). if (buffer.chars[0] == '0' + 10) { buffer.chars[0] = '1'; buffer.decimalPoint++; } } // The given fractionals number represents a fixed-point number with binary // point at bit (-exponent). // Preconditions: // -128 <= exponent <= 0. // 0 <= fractionals * 2^exponent < 1 // The buffer holds the result. // The function will round its result. During the rounding-process digits not // generated by this function might be updated, and the decimal-point variable // might be updated. If this function generates the digits 99 and the buffer // already contained "199" (thus yielding a buffer of "19999") then a // rounding-up will change the contents of the buffer to "20000". static void fillFractionals(long fractionals, final int exponent, final int fractional_count, final DtoaBuffer buffer) { assert (-128 <= exponent && exponent <= 0); // 'fractionals' is a fixed-decimalPoint number, with binary decimalPoint at bit // (-exponent). Inside the function the non-converted remainder of fractionals // is a fixed-decimalPoint number, with binary decimalPoint at bit 'decimalPoint'. if (-exponent <= 64) { // One 64 bit number is sufficient. assert (fractionals >>> 56 == 0); int point = -exponent; for (int i = 0; i < fractional_count; ++i) { if (fractionals == 0) break; // Instead of multiplying by 10 we multiply by 5 and adjust the point // location. This way the fractionals variable will not overflow. // Invariant at the beginning of the loop: fractionals < 2^point. // Initially we have: point <= 64 and fractionals < 2^56 // After each iteration the point is decremented by one. // Note that 5^3 = 125 < 128 = 2^7. // Therefore three iterations of this loop will not overflow fractionals // (even without the subtraction at the end of the loop body). At this // time point will satisfy point <= 61 and therefore fractionals < 2^point // and any further multiplication of fractionals by 5 will not overflow. fractionals *= 5; point--; final int digit = (int) (fractionals >>> point); assert (digit <= 9); buffer.chars[buffer.length] = (char) ('0' + digit); buffer.length++; fractionals -= (long) (digit) << point; } // If the first bit after the point is set we have to round up. if (((fractionals >>> (point - 1)) & 1) == 1) { roundUp(buffer); } } else { // We need 128 bits. assert (64 < -exponent && -exponent <= 128); final UInt128 fractionals128 = new UInt128(fractionals, 0); fractionals128.shift(-exponent - 64); int point = 128; for (int i = 0; i < fractional_count; ++i) { if (fractionals128.isZero()) break; // As before: instead of multiplying by 10 we multiply by 5 and adjust the // point location. // This multiplication will not overflow for the same reasons as before. fractionals128.multiply(5); point--; final int digit = fractionals128.divModPowerOf2(point); assert (digit <= 9); buffer.chars[buffer.length] = (char) ('0' + digit); buffer.length++; } if (fractionals128.bitAt(point - 1) == 1) { roundUp(buffer); } } } // Removes leading and trailing zeros. // If leading zeros are removed then the decimal point position is adjusted. static void trimZeros(final DtoaBuffer buffer) { while (buffer.length > 0 && buffer.chars[buffer.length - 1] == '0') { buffer.length--; } int first_non_zero = 0; while (first_non_zero < buffer.length && buffer.chars[first_non_zero] == '0') { first_non_zero++; } if (first_non_zero != 0) { for (int i = first_non_zero; i < buffer.length; ++i) { buffer.chars[i - first_non_zero] = buffer.chars[i]; } buffer.length -= first_non_zero; buffer.decimalPoint -= first_non_zero; } } static boolean fastFixedDtoa(final double v, final int fractional_count, final DtoaBuffer buffer) { final long kMaxUInt32 = 0xFFFFFFFFL; final long l = IeeeDouble.doubleToLong(v); long significand = IeeeDouble.significand(l); final int exponent = IeeeDouble.exponent(l); // v = significand * 2^exponent (with significand a 53bit integer). // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we // don't know how to compute the representation. 2^73 ~= 9.5*10^21. // If necessary this limit could probably be increased, but we don't need // more. if (exponent > 20) return false; if (fractional_count > 20) return false; // At most kDoubleSignificandSize bits of the significand are non-zero. // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero // bits: 0..11*..0xxx..53*..xx if (exponent + kDoubleSignificandSize > 64) { // The exponent must be > 11. // // We know that v = significand * 2^exponent. // And the exponent > 11. // We simplify the task by dividing v by 10^17. // The quotient delivers the first digits, and the remainder fits into a 64 // bit number. // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. final long kFive17 = 0xB1A2BC2EC5L; // 5^17 long divisor = kFive17; final int divisor_power = 17; long dividend = significand; final int quotient; final long remainder; // Let v = f * 2^e with f == significand and e == exponent. // Then need q (quotient) and r (remainder) as follows: // v = q * 10^17 + r // f * 2^e = q * 10^17 + r // f * 2^e = q * 5^17 * 2^17 + r // If e > 17 then // f * 2^(e-17) = q * 5^17 + r/2^17 // else // f = q * 5^17 * 2^(17-e) + r/2^e if (exponent > divisor_power) { // We only allow exponents of up to 20 and therefore (17 - e) <= 3 dividend <<= exponent - divisor_power; quotient = (int) Long.divideUnsigned(dividend, divisor); remainder = Long.remainderUnsigned(dividend, divisor) << divisor_power; } else { divisor <<= divisor_power - exponent; quotient = (int) Long.divideUnsigned(dividend, divisor); remainder = Long.remainderUnsigned(dividend, divisor) << exponent; } fillDigits32(quotient, buffer); fillDigits64FixedLength(remainder, buffer); buffer.decimalPoint = buffer.length; } else if (exponent >= 0) { // 0 <= exponent <= 11 significand <<= exponent; FillDigits64(significand, buffer); buffer.decimalPoint = buffer.length; } else if (exponent > -kDoubleSignificandSize) { // We have to cut the number. final long integrals = significand >>> -exponent; final long fractionals = significand - (integrals << -exponent); if (Long.compareUnsigned(integrals, kMaxUInt32) > 0) { FillDigits64(integrals, buffer); } else { fillDigits32((int) (integrals), buffer); } buffer.decimalPoint = buffer.length; fillFractionals(fractionals, exponent, fractional_count, buffer); } else if (exponent < -128) { // This configuration (with at most 20 digits) means that all digits must be // 0. assert (fractional_count <= 20); buffer.reset(); buffer.decimalPoint = -fractional_count; } else { buffer.decimalPoint = 0; fillFractionals(significand, exponent, fractional_count, buffer); } trimZeros(buffer); if (buffer.length == 0) { // The string is empty and the decimal_point thus has no importance. Mimick // Gay's dtoa and and set it to -fractional_count. buffer.decimalPoint = -fractional_count; } return true; } }