/* * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.crypto.provider; import java.util.Arrays; import java.util.Locale; import java.security.*; import java.security.spec.*; import javax.crypto.*; import javax.crypto.spec.*; import javax.crypto.BadPaddingException; /** * This class represents the symmetric algorithms in its various modes * (<code>ECB</code>, <code>CFB</code>, <code>OFB</code>, <code>CBC</code>, * <code>PCBC</code>, <code>CTR</code>, and <code>CTS</code>) and * padding schemes (<code>PKCS5Padding</code>, <code>NoPadding</code>, * <code>ISO10126Padding</code>). * * @author Gigi Ankeny * @author Jan Luehe * @see ElectronicCodeBook * @see CipherFeedback * @see OutputFeedback * @see CipherBlockChaining * @see PCBC * @see CounterMode * @see CipherTextStealing */ final class CipherCore { /* * internal buffer */ private byte[] buffer = null; /* * block size of cipher in bytes */ private int blockSize = 0; /* * unit size (number of input bytes that can be processed at a time) */ private int unitBytes = 0; /* * index of the content size left in the buffer */ private int buffered = 0; /* * minimum number of bytes in the buffer required for * FeedbackCipher.encryptFinal()/decryptFinal() call. * update() must buffer this many bytes before starting * to encrypt/decrypt data. * currently, only the following cases have non-zero values: * 1) CTS mode - due to its special handling on the last two blocks * (the last one may be incomplete). * 2) GCM mode + decryption - due to its trailing tag bytes */ private int minBytes = 0; /* * number of bytes needed to make the total input length a multiple * of the blocksize (this is used in feedback mode, when the number of * input bytes that are processed at a time is different from the block * size) */ private int diffBlocksize = 0; /* * padding class */ private Padding padding = null; /* * internal cipher engine */ private FeedbackCipher cipher = null; /* * the cipher mode */ private int cipherMode = ECB_MODE; /* * are we encrypting or decrypting? */ private boolean decrypting = false; /* * Block Mode constants */ private static final int ECB_MODE = 0; private static final int CBC_MODE = 1; private static final int CFB_MODE = 2; private static final int OFB_MODE = 3; private static final int PCBC_MODE = 4; private static final int CTR_MODE = 5; private static final int CTS_MODE = 6; static final int GCM_MODE = 7; /* * variables used for performing the GCM (key+iv) uniqueness check. * To use GCM mode safely, the cipher object must be re-initialized * with a different combination of key + iv values for each * encryption operation. However, checking all past key + iv values * isn't feasible. Thus, we only do a per-instance check of the * key + iv values used in previous encryption. * For decryption operations, no checking is necessary. * NOTE: this key+iv check have to be done inside CipherCore class * since CipherCore class buffers potential tag bytes in GCM mode * and may not call GaloisCounterMode when there isn't sufficient * input to process. */ private boolean requireReinit = false; private byte[] lastEncKey = null; private byte[] lastEncIv = null; /** * Creates an instance of CipherCore with default ECB mode and * PKCS5Padding. */ CipherCore(SymmetricCipher impl, int blkSize) { blockSize = blkSize; unitBytes = blkSize; diffBlocksize = blkSize; /* * The buffer should be usable for all cipher mode and padding * schemes. Thus, it has to be at least (blockSize+1) for CTS. * In decryption mode, it also hold the possible padding block. */ buffer = new byte[blockSize*2]; // set mode and padding cipher = new ElectronicCodeBook(impl); padding = new PKCS5Padding(blockSize); } /** * Sets the mode of this cipher. * * @param mode the cipher mode * * @exception NoSuchAlgorithmException if the requested cipher mode does * not exist for this cipher */ void setMode(String mode) throws NoSuchAlgorithmException { if (mode == null) throw new NoSuchAlgorithmException("null mode"); String modeUpperCase = mode.toUpperCase(Locale.ENGLISH); if (modeUpperCase.equals("ECB")) { return; } SymmetricCipher rawImpl = cipher.getEmbeddedCipher(); if (modeUpperCase.equals("CBC")) { cipherMode = CBC_MODE; cipher = new CipherBlockChaining(rawImpl); } else if (modeUpperCase.equals("CTS")) { cipherMode = CTS_MODE; cipher = new CipherTextStealing(rawImpl); minBytes = blockSize+1; padding = null; } else if (modeUpperCase.equals("CTR")) { cipherMode = CTR_MODE; cipher = new CounterMode(rawImpl); unitBytes = 1; padding = null; } else if (modeUpperCase.equals("GCM")) { // can only be used for block ciphers w/ 128-bit block size if (blockSize != 16) { throw new NoSuchAlgorithmException ("GCM mode can only be used for AES cipher"); } cipherMode = GCM_MODE; cipher = new GaloisCounterMode(rawImpl); padding = null; } else if (modeUpperCase.startsWith("CFB")) { cipherMode = CFB_MODE; unitBytes = getNumOfUnit(mode, "CFB".length(), blockSize); cipher = new CipherFeedback(rawImpl, unitBytes); } else if (modeUpperCase.startsWith("OFB")) { cipherMode = OFB_MODE; unitBytes = getNumOfUnit(mode, "OFB".length(), blockSize); cipher = new OutputFeedback(rawImpl, unitBytes); } else if (modeUpperCase.equals("PCBC")) { cipherMode = PCBC_MODE; cipher = new PCBC(rawImpl); } else { throw new NoSuchAlgorithmException("Cipher mode: " + mode + " not found"); } } /** * Returns the mode of this cipher. * * @return the parsed cipher mode */ int getMode() { return cipherMode; } private static int getNumOfUnit(String mode, int offset, int blockSize) throws NoSuchAlgorithmException { int result = blockSize; // use blockSize as default value if (mode.length() > offset) { int numInt; try { Integer num = Integer.valueOf(mode.substring(offset)); numInt = num.intValue(); result = numInt >> 3; } catch (NumberFormatException e) { throw new NoSuchAlgorithmException ("Algorithm mode: " + mode + " not implemented"); } if ((numInt % 8 != 0) || (result > blockSize)) { throw new NoSuchAlgorithmException ("Invalid algorithm mode: " + mode); } } return result; } /** * Sets the padding mechanism of this cipher. * * @param padding the padding mechanism * * @exception NoSuchPaddingException if the requested padding mechanism * does not exist */ void setPadding(String paddingScheme) throws NoSuchPaddingException { if (paddingScheme == null) { throw new NoSuchPaddingException("null padding"); } if (paddingScheme.equalsIgnoreCase("NoPadding")) { padding = null; } else if (paddingScheme.equalsIgnoreCase("ISO10126Padding")) { padding = new ISO10126Padding(blockSize); } else if (!paddingScheme.equalsIgnoreCase("PKCS5Padding")) { throw new NoSuchPaddingException("Padding: " + paddingScheme + " not implemented"); } if ((padding != null) && ((cipherMode == CTR_MODE) || (cipherMode == CTS_MODE) || (cipherMode == GCM_MODE))) { padding = null; String modeStr = null; switch (cipherMode) { case CTR_MODE: modeStr = "CTR"; break; case GCM_MODE: modeStr = "GCM"; break; case CTS_MODE: modeStr = "CTS"; break; default: // should never happen } if (modeStr != null) { throw new NoSuchPaddingException (modeStr + " mode must be used with NoPadding"); } } } /** * Returns the length in bytes that an output buffer would need to be in * order to hold the result of the next <code>update</code> or * <code>doFinal</code> operation, given the input length * <code>inputLen</code> (in bytes). * * <p>This call takes into account any unprocessed (buffered) data from a * previous <code>update</code> call, padding, and AEAD tagging. * * <p>The actual output length of the next <code>update</code> or * <code>doFinal</code> call may be smaller than the length returned by * this method. * * @param inputLen the input length (in bytes) * * @return the required output buffer size (in bytes) */ int getOutputSize(int inputLen) { // estimate based on the maximum return getOutputSizeByOperation(inputLen, true); } private int getOutputSizeByOperation(int inputLen, boolean isDoFinal) { int totalLen = buffered + inputLen + cipher.getBufferedLength(); switch (cipherMode) { case GCM_MODE: if (isDoFinal) { int tagLen = ((GaloisCounterMode) cipher).getTagLen(); if (!decrypting) { totalLen += tagLen; } else { totalLen -= tagLen; } } if (totalLen < 0) { totalLen = 0; } break; default: if (padding != null && !decrypting) { if (unitBytes != blockSize) { if (totalLen < diffBlocksize) { totalLen = diffBlocksize; } else { int residue = (totalLen - diffBlocksize) % blockSize; totalLen += (blockSize - residue); } } else { totalLen += padding.padLength(totalLen); } } break; } return totalLen; } /** * Returns the initialization vector (IV) in a new buffer. * * <p>This is useful in the case where a random IV has been created * (see <a href = "#init">init</a>), * or in the context of password-based encryption or * decryption, where the IV is derived from a user-provided password. * * @return the initialization vector in a new buffer, or null if the * underlying algorithm does not use an IV, or if the IV has not yet * been set. */ byte[] getIV() { byte[] iv = cipher.getIV(); return (iv == null) ? null : iv.clone(); } /** * Returns the parameters used with this cipher. * * <p>The returned parameters may be the same that were used to initialize * this cipher, or may contain the default set of parameters or a set of * randomly generated parameters used by the underlying cipher * implementation (provided that the underlying cipher implementation * uses a default set of parameters or creates new parameters if it needs * parameters but was not initialized with any). * * @return the parameters used with this cipher, or null if this cipher * does not use any parameters. */ AlgorithmParameters getParameters(String algName) { if (cipherMode == ECB_MODE) { return null; } AlgorithmParameters params = null; AlgorithmParameterSpec spec; byte[] iv = getIV(); if (iv == null) { // generate spec using default value if (cipherMode == GCM_MODE) { iv = new byte[GaloisCounterMode.DEFAULT_IV_LEN]; } else { iv = new byte[blockSize]; } SunJCE.getRandom().nextBytes(iv); } if (cipherMode == GCM_MODE) { algName = "GCM"; spec = new GCMParameterSpec (((GaloisCounterMode) cipher).getTagLen()*8, iv); } else { if (algName.equals("RC2")) { RC2Crypt rawImpl = (RC2Crypt) cipher.getEmbeddedCipher(); spec = new RC2ParameterSpec (rawImpl.getEffectiveKeyBits(), iv); } else { spec = new IvParameterSpec(iv); } } try { params = AlgorithmParameters.getInstance(algName, SunJCE.getInstance()); params.init(spec); } catch (NoSuchAlgorithmException nsae) { // should never happen throw new RuntimeException("Cannot find " + algName + " AlgorithmParameters implementation in SunJCE provider"); } catch (InvalidParameterSpecException ipse) { // should never happen throw new RuntimeException(spec.getClass() + " not supported"); } return params; } /** * Initializes this cipher with a key and a source of randomness. * * <p>The cipher is initialized for one of the following four operations: * encryption, decryption, key wrapping or key unwrapping, depending on * the value of <code>opmode</code>. * * <p>If this cipher requires an initialization vector (IV), it will get * it from <code>random</code>. * This behaviour should only be used in encryption or key wrapping * mode, however. * When initializing a cipher that requires an IV for decryption or * key unwrapping, the IV * (same IV that was used for encryption or key wrapping) must be provided * explicitly as a * parameter, in order to get the correct result. * * <p>This method also cleans existing buffer and other related state * information. * * @param opmode the operation mode of this cipher (this is one of * the following: * <code>ENCRYPT_MODE</code>, <code>DECRYPT_MODE</code>, * <code>WRAP_MODE</code> or <code>UNWRAP_MODE</code>) * @param key the secret key * @param random the source of randomness * * @exception InvalidKeyException if the given key is inappropriate for * initializing this cipher */ void init(int opmode, Key key, SecureRandom random) throws InvalidKeyException { try { init(opmode, key, (AlgorithmParameterSpec)null, random); } catch (InvalidAlgorithmParameterException e) { throw new InvalidKeyException(e.getMessage()); } } /** * Initializes this cipher with a key, a set of * algorithm parameters, and a source of randomness. * * <p>The cipher is initialized for one of the following four operations: * encryption, decryption, key wrapping or key unwrapping, depending on * the value of <code>opmode</code>. * * <p>If this cipher (including its underlying feedback or padding scheme) * requires any random bytes, it will get them from <code>random</code>. * * @param opmode the operation mode of this cipher (this is one of * the following: * <code>ENCRYPT_MODE</code>, <code>DECRYPT_MODE</code>, * <code>WRAP_MODE</code> or <code>UNWRAP_MODE</code>) * @param key the encryption key * @param params the algorithm parameters * @param random the source of randomness * * @exception InvalidKeyException if the given key is inappropriate for * initializing this cipher * @exception InvalidAlgorithmParameterException if the given algorithm * parameters are inappropriate for this cipher */ void init(int opmode, Key key, AlgorithmParameterSpec params, SecureRandom random) throws InvalidKeyException, InvalidAlgorithmParameterException { decrypting = (opmode == Cipher.DECRYPT_MODE) || (opmode == Cipher.UNWRAP_MODE); byte[] keyBytes = getKeyBytes(key); int tagLen = -1; byte[] ivBytes = null; if (params != null) { if (cipherMode == GCM_MODE) { if (params instanceof GCMParameterSpec) { tagLen = ((GCMParameterSpec)params).getTLen(); if (tagLen < 96 || tagLen > 128 || ((tagLen & 0x07) != 0)) { throw new InvalidAlgorithmParameterException ("Unsupported TLen value; must be one of " + "{128, 120, 112, 104, 96}"); } tagLen = tagLen >> 3; ivBytes = ((GCMParameterSpec)params).getIV(); } else { throw new InvalidAlgorithmParameterException ("Unsupported parameter: " + params); } } else { if (params instanceof IvParameterSpec) { ivBytes = ((IvParameterSpec)params).getIV(); if ((ivBytes == null) || (ivBytes.length != blockSize)) { throw new InvalidAlgorithmParameterException ("Wrong IV length: must be " + blockSize + " bytes long"); } } else if (params instanceof RC2ParameterSpec) { ivBytes = ((RC2ParameterSpec)params).getIV(); if ((ivBytes != null) && (ivBytes.length != blockSize)) { throw new InvalidAlgorithmParameterException ("Wrong IV length: must be " + blockSize + " bytes long"); } } else { throw new InvalidAlgorithmParameterException ("Unsupported parameter: " + params); } } } if (cipherMode == ECB_MODE) { if (ivBytes != null) { throw new InvalidAlgorithmParameterException ("ECB mode cannot use IV"); } } else if (ivBytes == null) { if (decrypting) { throw new InvalidAlgorithmParameterException("Parameters " + "missing"); } if (random == null) { random = SunJCE.getRandom(); } if (cipherMode == GCM_MODE) { ivBytes = new byte[GaloisCounterMode.DEFAULT_IV_LEN]; } else { ivBytes = new byte[blockSize]; } random.nextBytes(ivBytes); } buffered = 0; diffBlocksize = blockSize; String algorithm = key.getAlgorithm(); // GCM mode needs additional handling if (cipherMode == GCM_MODE) { if(tagLen == -1) { tagLen = GaloisCounterMode.DEFAULT_TAG_LEN; } if (decrypting) { minBytes = tagLen; } else { // check key+iv for encryption in GCM mode requireReinit = Arrays.equals(ivBytes, lastEncIv) && MessageDigest.isEqual(keyBytes, lastEncKey); if (requireReinit) { throw new InvalidAlgorithmParameterException ("Cannot reuse iv for GCM encryption"); } lastEncIv = ivBytes; lastEncKey = keyBytes; } ((GaloisCounterMode) cipher).init (decrypting, algorithm, keyBytes, ivBytes, tagLen); } else { cipher.init(decrypting, algorithm, keyBytes, ivBytes); } // skip checking key+iv from now on until after doFinal() requireReinit = false; } void init(int opmode, Key key, AlgorithmParameters params, SecureRandom random) throws InvalidKeyException, InvalidAlgorithmParameterException { AlgorithmParameterSpec spec = null; String paramType = null; if (params != null) { try { if (cipherMode == GCM_MODE) { paramType = "GCM"; spec = params.getParameterSpec(GCMParameterSpec.class); } else { // NOTE: RC2 parameters are always handled through // init(..., AlgorithmParameterSpec,...) method, so // we can assume IvParameterSpec type here. paramType = "IV"; spec = params.getParameterSpec(IvParameterSpec.class); } } catch (InvalidParameterSpecException ipse) { throw new InvalidAlgorithmParameterException ("Wrong parameter type: " + paramType + " expected"); } } init(opmode, key, spec, random); } /** * Return the key bytes of the specified key. Throw an InvalidKeyException * if the key is not usable. */ static byte[] getKeyBytes(Key key) throws InvalidKeyException { if (key == null) { throw new InvalidKeyException("No key given"); } // note: key.getFormat() may return null if (!"RAW".equalsIgnoreCase(key.getFormat())) { throw new InvalidKeyException("Wrong format: RAW bytes needed"); } byte[] keyBytes = key.getEncoded(); if (keyBytes == null) { throw new InvalidKeyException("RAW key bytes missing"); } return keyBytes; } /** * Continues a multiple-part encryption or decryption operation * (depending on how this cipher was initialized), processing another data * part. * * <p>The first <code>inputLen</code> bytes in the <code>input</code> * buffer, starting at <code>inputOffset</code>, are processed, and the * result is stored in a new buffer. * * @param input the input buffer * @param inputOffset the offset in <code>input</code> where the input * starts * @param inputLen the input length * * @return the new buffer with the result * * @exception IllegalStateException if this cipher is in a wrong state * (e.g., has not been initialized) */ byte[] update(byte[] input, int inputOffset, int inputLen) { if (requireReinit) { throw new IllegalStateException ("Must use either different key or iv for GCM encryption"); } byte[] output = null; try { output = new byte[getOutputSizeByOperation(inputLen, false)]; int len = update(input, inputOffset, inputLen, output, 0); if (len == output.length) { return output; } else { return Arrays.copyOf(output, len); } } catch (ShortBufferException e) { // should never happen throw new ProviderException("Unexpected exception", e); } } /** * Continues a multiple-part encryption or decryption operation * (depending on how this cipher was initialized), processing another data * part. * * <p>The first <code>inputLen</code> bytes in the <code>input</code> * buffer, starting at <code>inputOffset</code>, are processed, and the * result is stored in the <code>output</code> buffer, starting at * <code>outputOffset</code>. * * @param input the input buffer * @param inputOffset the offset in <code>input</code> where the input * starts * @param inputLen the input length * @param output the buffer for the result * @param outputOffset the offset in <code>output</code> where the result * is stored * * @return the number of bytes stored in <code>output</code> * * @exception ShortBufferException if the given output buffer is too small * to hold the result */ int update(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) throws ShortBufferException { if (requireReinit) { throw new IllegalStateException ("Must use either different key or iv for GCM encryption"); } // figure out how much can be sent to crypto function int len = buffered + inputLen - minBytes; if (padding != null && decrypting) { // do not include the padding bytes when decrypting len -= blockSize; } // do not count the trailing bytes which do not make up a unit len = (len > 0 ? (len - (len % unitBytes)) : 0); // check output buffer capacity if ((output == null) || ((output.length - outputOffset) < len)) { throw new ShortBufferException("Output buffer must be " + "(at least) " + len + " bytes long"); } int outLen = 0; if (len != 0) { // there is some work to do if ((input == output) && (outputOffset < (inputOffset + inputLen)) && (inputOffset < (outputOffset + buffer.length))) { // copy 'input' out to avoid its content being // overwritten prematurely. input = Arrays.copyOfRange(input, inputOffset, inputOffset + inputLen); inputOffset = 0; } if (len <= buffered) { // all to-be-processed data are from 'buffer' if (decrypting) { outLen = cipher.decrypt(buffer, 0, len, output, outputOffset); } else { outLen = cipher.encrypt(buffer, 0, len, output, outputOffset); } buffered -= len; if (buffered != 0) { System.arraycopy(buffer, len, buffer, 0, buffered); } } else { // len > buffered int inputConsumed = len - buffered; int temp; if (buffered > 0) { int bufferCapacity = buffer.length - buffered; if (bufferCapacity != 0) { temp = Math.min(bufferCapacity, inputConsumed); if (unitBytes != blockSize) { temp -= ((buffered + temp) % unitBytes); } System.arraycopy(input, inputOffset, buffer, buffered, temp); inputOffset += temp; inputConsumed -= temp; inputLen -= temp; buffered += temp; } // process 'buffer' if (decrypting) { outLen = cipher.decrypt(buffer, 0, buffered, output, outputOffset); } else { outLen = cipher.encrypt(buffer, 0, buffered, output, outputOffset); } outputOffset += outLen; buffered = 0; } if (inputConsumed > 0) { // still has input to process if (decrypting) { outLen += cipher.decrypt(input, inputOffset, inputConsumed, output, outputOffset); } else { outLen += cipher.encrypt(input, inputOffset, inputConsumed, output, outputOffset); } inputOffset += inputConsumed; inputLen -= inputConsumed; } } // Let's keep track of how many bytes are needed to make // the total input length a multiple of blocksize when // padding is applied if (unitBytes != blockSize) { if (len < diffBlocksize) { diffBlocksize -= len; } else { diffBlocksize = blockSize - ((len - diffBlocksize) % blockSize); } } } // Store remaining input into 'buffer' again if (inputLen > 0) { System.arraycopy(input, inputOffset, buffer, buffered, inputLen); buffered += inputLen; } return outLen; } /** * Encrypts or decrypts data in a single-part operation, * or finishes a multiple-part operation. * The data is encrypted or decrypted, depending on how this cipher was * initialized. * * <p>The first <code>inputLen</code> bytes in the <code>input</code> * buffer, starting at <code>inputOffset</code>, and any input bytes that * may have been buffered during a previous <code>update</code> operation, * are processed, with padding (if requested) being applied. * The result is stored in a new buffer. * * <p>The cipher is reset to its initial state (uninitialized) after this * call. * * @param input the input buffer * @param inputOffset the offset in <code>input</code> where the input * starts * @param inputLen the input length * * @return the new buffer with the result * * @exception IllegalBlockSizeException if this cipher is a block cipher, * no padding has been requested (only in encryption mode), and the total * input length of the data processed by this cipher is not a multiple of * block size * @exception BadPaddingException if this cipher is in decryption mode, * and (un)padding has been requested, but the decrypted data is not * bounded by the appropriate padding bytes */ byte[] doFinal(byte[] input, int inputOffset, int inputLen) throws IllegalBlockSizeException, BadPaddingException { byte[] output = null; try { output = new byte[getOutputSizeByOperation(inputLen, true)]; int len = doFinal(input, inputOffset, inputLen, output, 0); if (len < output.length) { return Arrays.copyOf(output, len); } else { return output; } } catch (ShortBufferException e) { // never thrown throw new ProviderException("Unexpected exception", e); } } /** * Encrypts or decrypts data in a single-part operation, * or finishes a multiple-part operation. * The data is encrypted or decrypted, depending on how this cipher was * initialized. * * <p>The first <code>inputLen</code> bytes in the <code>input</code> * buffer, starting at <code>inputOffset</code>, and any input bytes that * may have been buffered during a previous <code>update</code> operation, * are processed, with padding (if requested) being applied. * The result is stored in the <code>output</code> buffer, starting at * <code>outputOffset</code>. * * <p>The cipher is reset to its initial state (uninitialized) after this * call. * * @param input the input buffer * @param inputOffset the offset in <code>input</code> where the input * starts * @param inputLen the input length * @param output the buffer for the result * @param outputOffset the offset in <code>output</code> where the result * is stored * * @return the number of bytes stored in <code>output</code> * * @exception IllegalBlockSizeException if this cipher is a block cipher, * no padding has been requested (only in encryption mode), and the total * input length of the data processed by this cipher is not a multiple of * block size * @exception ShortBufferException if the given output buffer is too small * to hold the result * @exception BadPaddingException if this cipher is in decryption mode, * and (un)padding has been requested, but the decrypted data is not * bounded by the appropriate padding bytes */ int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) throws IllegalBlockSizeException, ShortBufferException, BadPaddingException { if (requireReinit) { throw new IllegalStateException ("Must use either different key or iv for GCM encryption"); } int estOutSize = getOutputSizeByOperation(inputLen, true); // check output buffer capacity. // if we are decrypting with padding applied, we can perform this // check only after we have determined how many padding bytes there // are. int outputCapacity = output.length - outputOffset; int minOutSize = (decrypting? (estOutSize - blockSize):estOutSize); if ((output == null) || (outputCapacity < minOutSize)) { throw new ShortBufferException("Output buffer must be " + "(at least) " + minOutSize + " bytes long"); } // calculate total input length int len = buffered + inputLen; // calculate padding length int totalLen = len + cipher.getBufferedLength(); int paddingLen = 0; // will the total input length be a multiple of blockSize? if (unitBytes != blockSize) { if (totalLen < diffBlocksize) { paddingLen = diffBlocksize - totalLen; } else { paddingLen = blockSize - ((totalLen - diffBlocksize) % blockSize); } } else if (padding != null) { paddingLen = padding.padLength(totalLen); } if (decrypting && (padding != null) && (paddingLen > 0) && (paddingLen != blockSize)) { throw new IllegalBlockSizeException ("Input length must be multiple of " + blockSize + " when decrypting with padded cipher"); } /* * prepare the final input, assemble a new buffer if any * of the following is true: * - 'input' and 'output' are the same buffer * - there are internally buffered bytes * - doing encryption and padding is needed */ byte[] finalBuf = input; int finalOffset = inputOffset; int finalBufLen = inputLen; if ((buffered != 0) || (!decrypting && padding != null) || ((input == output) && (outputOffset < (inputOffset + inputLen)) && (inputOffset < (outputOffset + buffer.length)))) { if (decrypting || padding == null) { paddingLen = 0; } finalBuf = new byte[len + paddingLen]; finalOffset = 0; if (buffered != 0) { System.arraycopy(buffer, 0, finalBuf, 0, buffered); } if (inputLen != 0) { System.arraycopy(input, inputOffset, finalBuf, buffered, inputLen); } if (paddingLen != 0) { padding.padWithLen(finalBuf, (buffered+inputLen), paddingLen); } finalBufLen = finalBuf.length; } int outLen = 0; if (decrypting) { // if the size of specified output buffer is less than // the length of the cipher text, then the current // content of cipher has to be preserved in order for // users to retry the call with a larger buffer in the // case of ShortBufferException. if (outputCapacity < estOutSize) { cipher.save(); } // create temporary output buffer so that only "real" // data bytes are passed to user's output buffer. byte[] outWithPadding = new byte[estOutSize]; outLen = finalNoPadding(finalBuf, finalOffset, outWithPadding, 0, finalBufLen); if (padding != null) { int padStart = padding.unpad(outWithPadding, 0, outLen); if (padStart < 0) { throw new BadPaddingException("Given final block not " + "properly padded. Such issues can arise if a bad key " + "is used during decryption."); } outLen = padStart; } if (outputCapacity < outLen) { // restore so users can retry with a larger buffer cipher.restore(); throw new ShortBufferException("Output buffer too short: " + (outputCapacity) + " bytes given, " + outLen + " bytes needed"); } // copy the result into user-supplied output buffer System.arraycopy(outWithPadding, 0, output, outputOffset, outLen); } else { // encrypting try { outLen = finalNoPadding(finalBuf, finalOffset, output, outputOffset, finalBufLen); } finally { // reset after doFinal() for GCM encryption requireReinit = (cipherMode == GCM_MODE); } } buffered = 0; diffBlocksize = blockSize; if (cipherMode != ECB_MODE) { cipher.reset(); } return outLen; } private int finalNoPadding(byte[] in, int inOfs, byte[] out, int outOfs, int len) throws IllegalBlockSizeException, AEADBadTagException, ShortBufferException { if ((cipherMode != GCM_MODE) && (in == null || len == 0)) { return 0; } if ((cipherMode != CFB_MODE) && (cipherMode != OFB_MODE) && (cipherMode != GCM_MODE) && ((len % unitBytes) != 0) && (cipherMode != CTS_MODE)) { if (padding != null) { throw new IllegalBlockSizeException ("Input length (with padding) not multiple of " + unitBytes + " bytes"); } else { throw new IllegalBlockSizeException ("Input length not multiple of " + unitBytes + " bytes"); } } int outLen = 0; if (decrypting) { outLen = cipher.decryptFinal(in, inOfs, len, out, outOfs); } else { outLen = cipher.encryptFinal(in, inOfs, len, out, outOfs); } return outLen; } // Note: Wrap() and Unwrap() are the same in // each of SunJCE CipherSpi implementation classes. // They are duplicated due to export control requirements: // All CipherSpi implementation must be final. /** * Wrap a key. * * @param key the key to be wrapped. * * @return the wrapped key. * * @exception IllegalBlockSizeException if this cipher is a block * cipher, no padding has been requested, and the length of the * encoding of the key to be wrapped is not a * multiple of the block size. * * @exception InvalidKeyException if it is impossible or unsafe to * wrap the key with this cipher (e.g., a hardware protected key is * being passed to a software only cipher). */ byte[] wrap(Key key) throws IllegalBlockSizeException, InvalidKeyException { byte[] result = null; try { byte[] encodedKey = key.getEncoded(); if ((encodedKey == null) || (encodedKey.length == 0)) { throw new InvalidKeyException("Cannot get an encoding of " + "the key to be wrapped"); } result = doFinal(encodedKey, 0, encodedKey.length); } catch (BadPaddingException e) { // Should never happen } return result; } /** * Unwrap a previously wrapped key. * * @param wrappedKey the key to be unwrapped. * * @param wrappedKeyAlgorithm the algorithm the wrapped key is for. * * @param wrappedKeyType the type of the wrapped key. * This is one of <code>Cipher.SECRET_KEY</code>, * <code>Cipher.PRIVATE_KEY</code>, or <code>Cipher.PUBLIC_KEY</code>. * * @return the unwrapped key. * * @exception NoSuchAlgorithmException if no installed providers * can create keys of type <code>wrappedKeyType</code> for the * <code>wrappedKeyAlgorithm</code>. * * @exception InvalidKeyException if <code>wrappedKey</code> does not * represent a wrapped key of type <code>wrappedKeyType</code> for * the <code>wrappedKeyAlgorithm</code>. */ Key unwrap(byte[] wrappedKey, String wrappedKeyAlgorithm, int wrappedKeyType) throws InvalidKeyException, NoSuchAlgorithmException { byte[] encodedKey; try { encodedKey = doFinal(wrappedKey, 0, wrappedKey.length); } catch (BadPaddingException ePadding) { throw new InvalidKeyException("The wrapped key is not padded " + "correctly"); } catch (IllegalBlockSizeException eBlockSize) { throw new InvalidKeyException("The wrapped key does not have " + "the correct length"); } return ConstructKeys.constructKey(encodedKey, wrappedKeyAlgorithm, wrappedKeyType); } /** * Continues a multi-part update of the Additional Authentication * Data (AAD), using a subset of the provided buffer. * <p> * Calls to this method provide AAD to the cipher when operating in * modes such as AEAD (GCM/CCM). If this cipher is operating in * either GCM or CCM mode, all AAD must be supplied before beginning * operations on the ciphertext (via the {@code update} and {@code * doFinal} methods). * * @param src the buffer containing the AAD * @param offset the offset in {@code src} where the AAD input starts * @param len the number of AAD bytes * * @throws IllegalStateException if this cipher is in a wrong state * (e.g., has not been initialized), does not accept AAD, or if * operating in either GCM or CCM mode and one of the {@code update} * methods has already been called for the active * encryption/decryption operation * @throws UnsupportedOperationException if this method * has not been overridden by an implementation * * @since 1.8 */ void updateAAD(byte[] src, int offset, int len) { if (requireReinit) { throw new IllegalStateException ("Must use either different key or iv for GCM encryption"); } cipher.updateAAD(src, offset, len); } }