/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* * This file is available under and governed by the GNU General Public * License version 2 only, as published by the Free Software Foundation. * However, the following notice accompanied the original version of this * file: * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; /** * An object that executes submitted {@link Runnable} tasks. This * interface provides a way of decoupling task submission from the * mechanics of how each task will be run, including details of thread * use, scheduling, etc. An {@code Executor} is normally used * instead of explicitly creating threads. For example, rather than * invoking {@code new Thread(new RunnableTask()).start()} for each * of a set of tasks, you might use: * * <pre> {@code * Executor executor = anExecutor(); * executor.execute(new RunnableTask1()); * executor.execute(new RunnableTask2()); * ...}</pre> * * However, the {@code Executor} interface does not strictly require * that execution be asynchronous. In the simplest case, an executor * can run the submitted task immediately in the caller's thread: * * <pre> {@code * class DirectExecutor implements Executor { * public void execute(Runnable r) { * r.run(); * } * }}</pre> * * More typically, tasks are executed in some thread other than the * caller's thread. The executor below spawns a new thread for each * task. * * <pre> {@code * class ThreadPerTaskExecutor implements Executor { * public void execute(Runnable r) { * new Thread(r).start(); * } * }}</pre> * * Many {@code Executor} implementations impose some sort of * limitation on how and when tasks are scheduled. The executor below * serializes the submission of tasks to a second executor, * illustrating a composite executor. * * <pre> {@code * class SerialExecutor implements Executor { * final Queue<Runnable> tasks = new ArrayDeque<>(); * final Executor executor; * Runnable active; * * SerialExecutor(Executor executor) { * this.executor = executor; * } * * public synchronized void execute(Runnable r) { * tasks.add(() -> { * try { * r.run(); * } finally { * scheduleNext(); * } * }); * if (active == null) { * scheduleNext(); * } * } * * protected synchronized void scheduleNext() { * if ((active = tasks.poll()) != null) { * executor.execute(active); * } * } * }}</pre> * * The {@code Executor} implementations provided in this package * implement {@link ExecutorService}, which is a more extensive * interface. The {@link ThreadPoolExecutor} class provides an * extensible thread pool implementation. The {@link Executors} class * provides convenient factory methods for these Executors. * * <p>Memory consistency effects: Actions in a thread prior to * submitting a {@code Runnable} object to an {@code Executor} * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> * its execution begins, perhaps in another thread. * * @since 1.5 * @author Doug Lea */ public interface Executor { /** * Executes the given command at some time in the future. The command * may execute in a new thread, in a pooled thread, or in the calling * thread, at the discretion of the {@code Executor} implementation. * * @param command the runnable task * @throws RejectedExecutionException if this task cannot be * accepted for execution * @throws NullPointerException if command is null */ void execute(Runnable command); }