/* * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package jdk.nashorn.internal.runtime; import static jdk.nashorn.internal.lookup.Lookup.MH; import static jdk.nashorn.internal.runtime.ECMAErrors.typeError; import static jdk.nashorn.internal.runtime.ScriptRuntime.UNDEFINED; import java.io.IOException; import java.io.ObjectInputStream; import java.io.Serializable; import java.lang.invoke.MethodHandle; import java.lang.invoke.MethodHandles; import java.lang.invoke.MethodType; import java.util.Collection; import java.util.LinkedList; import java.util.List; import jdk.nashorn.internal.runtime.linker.LinkerCallSite; /** * A container for data needed to instantiate a specific {@link ScriptFunction} at runtime. * Instances of this class are created during codegen and stored in script classes' * constants array to reduce function instantiation overhead during runtime. */ public abstract class ScriptFunctionData implements Serializable { static final int MAX_ARITY = LinkerCallSite.ARGLIMIT; static { // Assert it fits in a byte, as that's what we store it in. It's just a size optimization though, so if needed // "byte arity" field can be widened. assert MAX_ARITY < 256; } /** Name of the function or "" for anonymous functions */ protected final String name; /** * A list of code versions of a function sorted in ascending order of generic descriptors. */ protected transient LinkedList<CompiledFunction> code = new LinkedList<>(); /** Function flags */ protected int flags; // Parameter arity of the function, corresponding to "f.length". E.g. "function f(a, b, c) { ... }" arity is 3, and // some built-in ECMAScript functions have their arity declared by the specification. Note that regardless of this // value, the function might still be capable of receiving variable number of arguments, see isVariableArity. private int arity; /** * A pair of method handles used for generic invoker and constructor. Field is volatile as it can be initialized by * multiple threads concurrently, but we still tolerate a race condition in it as all values stored into it are * idempotent. */ private volatile transient GenericInvokers genericInvokers; private static final MethodHandle BIND_VAR_ARGS = findOwnMH("bindVarArgs", Object[].class, Object[].class, Object[].class); /** Is this a strict mode function? */ public static final int IS_STRICT = 1 << 0; /** Is this a built-in function? */ public static final int IS_BUILTIN = 1 << 1; /** Is this a constructor function? */ public static final int IS_CONSTRUCTOR = 1 << 2; /** Does this function expect a callee argument? */ public static final int NEEDS_CALLEE = 1 << 3; /** Does this function make use of the this-object argument? */ public static final int USES_THIS = 1 << 4; /** Is this a variable arity function? */ public static final int IS_VARIABLE_ARITY = 1 << 5; /** Is this a object literal property getter or setter? */ public static final int IS_PROPERTY_ACCESSOR = 1 << 6; /** Is this an ES6 method? */ public static final int IS_ES6_METHOD = 1 << 7; /** Flag for strict or built-in functions */ public static final int IS_STRICT_OR_BUILTIN = IS_STRICT | IS_BUILTIN; /** Flag for built-in constructors */ public static final int IS_BUILTIN_CONSTRUCTOR = IS_BUILTIN | IS_CONSTRUCTOR; private static final long serialVersionUID = 4252901245508769114L; /** * Constructor * * @param name script function name * @param arity arity * @param flags the function flags */ ScriptFunctionData(final String name, final int arity, final int flags) { this.name = name; this.flags = flags; setArity(arity); } final int getArity() { return arity; } String getDocumentation() { return toSource(); } String getDocumentationKey() { return null; } final boolean isVariableArity() { return (flags & IS_VARIABLE_ARITY) != 0; } /** * Used from e.g. Native*$Constructors as an explicit call. TODO - make arity immutable and final * @param arity new arity */ void setArity(final int arity) { if(arity < 0 || arity > MAX_ARITY) { throw new IllegalArgumentException(String.valueOf(arity)); } this.arity = arity; } /** * Used from nasgen generated code. * * @param docKey documentation key for this function */ void setDocumentationKey(final String docKey) { } CompiledFunction bind(final CompiledFunction originalInv, final ScriptFunction fn, final Object self, final Object[] args) { final MethodHandle boundInvoker = bindInvokeHandle(originalInv.createComposableInvoker(), fn, self, args); if (isConstructor()) { return new CompiledFunction(boundInvoker, bindConstructHandle(originalInv.createComposableConstructor(), fn, args), null); } return new CompiledFunction(boundInvoker); } /** * Is this a ScriptFunction generated with strict semantics? * @return true if strict, false otherwise */ public final boolean isStrict() { return (flags & IS_STRICT) != 0; } /** * Return the complete internal function name for this * data, not anonymous or similar. May be identical * @return internal function name */ protected String getFunctionName() { return getName(); } final boolean isBuiltin() { return (flags & IS_BUILTIN) != 0; } final boolean isConstructor() { return (flags & IS_CONSTRUCTOR) != 0; } abstract boolean needsCallee(); /** * Returns true if this is a non-strict, non-built-in function that requires non-primitive this argument * according to ECMA 10.4.3. * @return true if this argument must be an object */ final boolean needsWrappedThis() { return (flags & USES_THIS) != 0 && (flags & IS_STRICT_OR_BUILTIN) == 0; } String toSource() { return "function " + (name == null ? "" : name) + "() { [native code] }"; } String getName() { return name; } /** * Get this function as a String containing its source code. If no source code * exists in this ScriptFunction, its contents will be displayed as {@code [native code]} * * @return string representation of this function */ @Override public String toString() { return name.isEmpty() ? "<anonymous>" : name; } /** * Verbose description of data * @return verbose description */ public String toStringVerbose() { final StringBuilder sb = new StringBuilder(); sb.append("name='"). append(name.isEmpty() ? "<anonymous>" : name). append("' "). append(code.size()). append(" invokers="). append(code); return sb.toString(); } /** * Pick the best invoker, i.e. the one version of this method with as narrow and specific * types as possible. If the call site arguments are objects, but boxed primitives we can * also try to get a primitive version of the method and do an unboxing filter, but then * we need to insert a guard that checks the argument is really always a boxed primitive * and not suddenly a "real" object * * @param callSiteType callsite type * @return compiled function object representing the best invoker. */ final CompiledFunction getBestInvoker(final MethodType callSiteType, final ScriptObject runtimeScope) { return getBestInvoker(callSiteType, runtimeScope, CompiledFunction.NO_FUNCTIONS); } final CompiledFunction getBestInvoker(final MethodType callSiteType, final ScriptObject runtimeScope, final Collection<CompiledFunction> forbidden) { final CompiledFunction cf = getBest(callSiteType, runtimeScope, forbidden); assert cf != null; return cf; } final CompiledFunction getBestConstructor(final MethodType callSiteType, final ScriptObject runtimeScope, final Collection<CompiledFunction> forbidden) { if (!isConstructor()) { throw typeError("not.a.constructor", toSource()); } // Constructor call sites don't have a "this", but getBest is meant to operate on "callee, this, ..." style final CompiledFunction cf = getBest(callSiteType.insertParameterTypes(1, Object.class), runtimeScope, forbidden); return cf; } /** * If we can have lazy code generation, this is a hook to ensure that the code has been compiled. * This does not guarantee the code been installed in this {@code ScriptFunctionData} instance */ protected void ensureCompiled() { //empty } /** * Return a generic Object/Object invoker for this method. It will ensure code * is generated, get the most generic of all versions of this function and adapt it * to Objects. * * @param runtimeScope the runtime scope. It can be used to evaluate types of scoped variables to guide the * optimistic compilation, should the call to this method trigger code compilation. Can be null if current runtime * scope is not known, but that might cause compilation of code that will need more deoptimization passes. * @return generic invoker of this script function */ final MethodHandle getGenericInvoker(final ScriptObject runtimeScope) { // This method has race conditions both on genericsInvoker and genericsInvoker.invoker, but even if invoked // concurrently, they'll create idempotent results, so it doesn't matter. We could alternatively implement this // using java.util.concurrent.AtomicReferenceFieldUpdater, but it's hardly worth it. final GenericInvokers lgenericInvokers = ensureGenericInvokers(); MethodHandle invoker = lgenericInvokers.invoker; if(invoker == null) { lgenericInvokers.invoker = invoker = createGenericInvoker(runtimeScope); } return invoker; } private MethodHandle createGenericInvoker(final ScriptObject runtimeScope) { return makeGenericMethod(getGeneric(runtimeScope).createComposableInvoker()); } final MethodHandle getGenericConstructor(final ScriptObject runtimeScope) { // This method has race conditions both on genericsInvoker and genericsInvoker.constructor, but even if invoked // concurrently, they'll create idempotent results, so it doesn't matter. We could alternatively implement this // using java.util.concurrent.AtomicReferenceFieldUpdater, but it's hardly worth it. final GenericInvokers lgenericInvokers = ensureGenericInvokers(); MethodHandle constructor = lgenericInvokers.constructor; if(constructor == null) { lgenericInvokers.constructor = constructor = createGenericConstructor(runtimeScope); } return constructor; } private MethodHandle createGenericConstructor(final ScriptObject runtimeScope) { return makeGenericMethod(getGeneric(runtimeScope).createComposableConstructor()); } private GenericInvokers ensureGenericInvokers() { GenericInvokers lgenericInvokers = genericInvokers; if(lgenericInvokers == null) { genericInvokers = lgenericInvokers = new GenericInvokers(); } return lgenericInvokers; } private static MethodType widen(final MethodType cftype) { final Class<?>[] paramTypes = new Class<?>[cftype.parameterCount()]; for (int i = 0; i < cftype.parameterCount(); i++) { paramTypes[i] = cftype.parameterType(i).isPrimitive() ? cftype.parameterType(i) : Object.class; } return MH.type(cftype.returnType(), paramTypes); } /** * Used to find an apply to call version that fits this callsite. * We cannot just, as in the normal matcher case, return e.g. (Object, Object, int) * for (Object, Object, int, int, int) or we will destroy the semantics and get * a function that, when padded with undefined values, behaves differently * @param type actual call site type * @return apply to call that perfectly fits this callsite or null if none found */ CompiledFunction lookupExactApplyToCall(final MethodType type) { for (final CompiledFunction cf : code) { if (!cf.isApplyToCall()) { continue; } final MethodType cftype = cf.type(); if (cftype.parameterCount() != type.parameterCount()) { continue; } if (widen(cftype).equals(widen(type))) { return cf; } } return null; } CompiledFunction pickFunction(final MethodType callSiteType, final boolean canPickVarArg) { for (final CompiledFunction candidate : code) { if (candidate.matchesCallSite(callSiteType, canPickVarArg)) { return candidate; } } return null; } /** * Returns the best function for the specified call site type. * @param callSiteType The call site type. Call site types are expected to have the form * {@code (callee, this[, args...])}. * @param runtimeScope the runtime scope. It can be used to evaluate types of scoped variables to guide the * optimistic compilation, should the call to this method trigger code compilation. Can be null if current runtime * scope is not known, but that might cause compilation of code that will need more deoptimization passes. * @param linkLogicOkay is a CompiledFunction with a LinkLogic acceptable? * @return the best function for the specified call site type. */ abstract CompiledFunction getBest(final MethodType callSiteType, final ScriptObject runtimeScope, final Collection<CompiledFunction> forbidden, final boolean linkLogicOkay); /** * Returns the best function for the specified call site type. * @param callSiteType The call site type. Call site types are expected to have the form * {@code (callee, this[, args...])}. * @param runtimeScope the runtime scope. It can be used to evaluate types of scoped variables to guide the * optimistic compilation, should the call to this method trigger code compilation. Can be null if current runtime * scope is not known, but that might cause compilation of code that will need more deoptimization passes. * @return the best function for the specified call site type. */ final CompiledFunction getBest(final MethodType callSiteType, final ScriptObject runtimeScope, final Collection<CompiledFunction> forbidden) { return getBest(callSiteType, runtimeScope, forbidden, true); } boolean isValidCallSite(final MethodType callSiteType) { return callSiteType.parameterCount() >= 2 && // Must have at least (callee, this) callSiteType.parameterType(0).isAssignableFrom(ScriptFunction.class); // Callee must be assignable from script function } CompiledFunction getGeneric(final ScriptObject runtimeScope) { return getBest(getGenericType(), runtimeScope, CompiledFunction.NO_FUNCTIONS, false); } /** * Get a method type for a generic invoker. * @return the method type for the generic invoker */ abstract MethodType getGenericType(); /** * Allocates an object using this function's allocator. * * @param map the property map for the allocated object. * @return the object allocated using this function's allocator, or null if the function doesn't have an allocator. */ ScriptObject allocate(final PropertyMap map) { return null; } /** * Get the property map to use for objects allocated by this function. * * @param prototype the prototype of the allocated object * @return the property map for allocated objects. */ PropertyMap getAllocatorMap(final ScriptObject prototype) { return null; } /** * This method is used to create the immutable portion of a bound function. * See {@link ScriptFunction#createBound(Object, Object[])} * * @param fn the original function being bound * @param self this reference to bind. Can be null. * @param args additional arguments to bind. Can be null. */ ScriptFunctionData makeBoundFunctionData(final ScriptFunction fn, final Object self, final Object[] args) { final Object[] allArgs = args == null ? ScriptRuntime.EMPTY_ARRAY : args; final int length = args == null ? 0 : args.length; // Clear the callee and this flags final int boundFlags = flags & ~NEEDS_CALLEE & ~USES_THIS; final List<CompiledFunction> boundList = new LinkedList<>(); final ScriptObject runtimeScope = fn.getScope(); final CompiledFunction bindTarget = new CompiledFunction(getGenericInvoker(runtimeScope), getGenericConstructor(runtimeScope), null); boundList.add(bind(bindTarget, fn, self, allArgs)); return new FinalScriptFunctionData(name, Math.max(0, getArity() - length), boundList, boundFlags); } /** * Convert this argument for non-strict functions according to ES 10.4.3 * * @param thiz the this argument * * @return the converted this object */ private Object convertThisObject(final Object thiz) { return needsWrappedThis() ? wrapThis(thiz) : thiz; } static Object wrapThis(final Object thiz) { if (!(thiz instanceof ScriptObject)) { if (JSType.nullOrUndefined(thiz)) { return Context.getGlobal(); } if (isPrimitiveThis(thiz)) { return Context.getGlobal().wrapAsObject(thiz); } } return thiz; } static boolean isPrimitiveThis(final Object obj) { return JSType.isString(obj) || obj instanceof Number || obj instanceof Boolean; } /** * Creates an invoker method handle for a bound function. * * @param targetFn the function being bound * @param originalInvoker an original invoker method handle for the function. This can be its generic invoker or * any of its specializations. * @param self the "this" value being bound * @param args additional arguments being bound * * @return a bound invoker method handle that will bind the self value and the specified arguments. The resulting * invoker never needs a callee; if the original invoker needed it, it will be bound to {@code fn}. The resulting * invoker still takes an initial {@code this} parameter, but it is always dropped and the bound {@code self} passed * to the original invoker on invocation. */ private MethodHandle bindInvokeHandle(final MethodHandle originalInvoker, final ScriptFunction targetFn, final Object self, final Object[] args) { // Is the target already bound? If it is, we won't bother binding either callee or self as they're already bound // in the target and will be ignored anyway. final boolean isTargetBound = targetFn.isBoundFunction(); final boolean needsCallee = needsCallee(originalInvoker); assert needsCallee == needsCallee() : "callee contract violation 2"; assert !(isTargetBound && needsCallee); // already bound functions don't need a callee final Object boundSelf = isTargetBound ? null : convertThisObject(self); final MethodHandle boundInvoker; if (isVarArg(originalInvoker)) { // First, bind callee and this without arguments final MethodHandle noArgBoundInvoker; if (isTargetBound) { // Don't bind either callee or this noArgBoundInvoker = originalInvoker; } else if (needsCallee) { // Bind callee and this noArgBoundInvoker = MH.insertArguments(originalInvoker, 0, targetFn, boundSelf); } else { // Only bind this noArgBoundInvoker = MH.bindTo(originalInvoker, boundSelf); } // Now bind arguments if (args.length > 0) { boundInvoker = varArgBinder(noArgBoundInvoker, args); } else { boundInvoker = noArgBoundInvoker; } } else { // If target is already bound, insert additional bound arguments after "this" argument, at position 1. final int argInsertPos = isTargetBound ? 1 : 0; final Object[] boundArgs = new Object[Math.min(originalInvoker.type().parameterCount() - argInsertPos, args.length + (isTargetBound ? 0 : needsCallee ? 2 : 1))]; int next = 0; if (!isTargetBound) { if (needsCallee) { boundArgs[next++] = targetFn; } boundArgs[next++] = boundSelf; } // If more bound args were specified than the function can take, we'll just drop those. System.arraycopy(args, 0, boundArgs, next, boundArgs.length - next); // If target is already bound, insert additional bound arguments after "this" argument, at position 1; // "this" will get dropped anyway by the target invoker. We previously asserted that already bound functions // don't take a callee parameter, so we can know that the signature is (this[, args...]) therefore args // start at position 1. If the function is not bound, we start inserting arguments at position 0. boundInvoker = MH.insertArguments(originalInvoker, argInsertPos, boundArgs); } if (isTargetBound) { return boundInvoker; } // If the target is not already bound, add a dropArguments that'll throw away the passed this return MH.dropArguments(boundInvoker, 0, Object.class); } /** * Creates a constructor method handle for a bound function using the passed constructor handle. * * @param originalConstructor the constructor handle to bind. It must be a composed constructor. * @param fn the function being bound * @param args arguments being bound * * @return a bound constructor method handle that will bind the specified arguments. The resulting constructor never * needs a callee; if the original constructor needed it, it will be bound to {@code fn}. The resulting constructor * still takes an initial {@code this} parameter and passes it to the underlying original constructor. Finally, if * this script function data object has no constructor handle, null is returned. */ private static MethodHandle bindConstructHandle(final MethodHandle originalConstructor, final ScriptFunction fn, final Object[] args) { assert originalConstructor != null; // If target function is already bound, don't bother binding the callee. final MethodHandle calleeBoundConstructor = fn.isBoundFunction() ? originalConstructor : MH.dropArguments(MH.bindTo(originalConstructor, fn), 0, ScriptFunction.class); if (args.length == 0) { return calleeBoundConstructor; } if (isVarArg(calleeBoundConstructor)) { return varArgBinder(calleeBoundConstructor, args); } final Object[] boundArgs; final int maxArgCount = calleeBoundConstructor.type().parameterCount() - 1; if (args.length <= maxArgCount) { boundArgs = args; } else { boundArgs = new Object[maxArgCount]; System.arraycopy(args, 0, boundArgs, 0, maxArgCount); } return MH.insertArguments(calleeBoundConstructor, 1, boundArgs); } /** * Takes a method handle, and returns a potentially different method handle that can be used in * {@code ScriptFunction#invoke(Object, Object...)} or {code ScriptFunction#construct(Object, Object...)}. * The returned method handle will be sure to return {@code Object}, and will have all its parameters turned into * {@code Object} as well, except for the following ones: * <ul> * <li>a last parameter of type {@code Object[]} which is used for vararg functions,</li> * <li>the first argument, which is forced to be {@link ScriptFunction}, in case the function receives itself * (callee) as an argument.</li> * </ul> * * @param mh the original method handle * * @return the new handle, conforming to the rules above. */ private static MethodHandle makeGenericMethod(final MethodHandle mh) { final MethodType type = mh.type(); final MethodType newType = makeGenericType(type); return type.equals(newType) ? mh : mh.asType(newType); } private static MethodType makeGenericType(final MethodType type) { MethodType newType = type.generic(); if (isVarArg(type)) { newType = newType.changeParameterType(type.parameterCount() - 1, Object[].class); } if (needsCallee(type)) { newType = newType.changeParameterType(0, ScriptFunction.class); } return newType; } /** * Execute this script function. * * @param self Target object. * @param arguments Call arguments. * @return ScriptFunction result. * * @throws Throwable if there is an exception/error with the invocation or thrown from it */ Object invoke(final ScriptFunction fn, final Object self, final Object... arguments) throws Throwable { final MethodHandle mh = getGenericInvoker(fn.getScope()); final Object selfObj = convertThisObject(self); final Object[] args = arguments == null ? ScriptRuntime.EMPTY_ARRAY : arguments; DebuggerSupport.notifyInvoke(mh); if (isVarArg(mh)) { if (needsCallee(mh)) { return mh.invokeExact(fn, selfObj, args); } return mh.invokeExact(selfObj, args); } final int paramCount = mh.type().parameterCount(); if (needsCallee(mh)) { switch (paramCount) { case 2: return mh.invokeExact(fn, selfObj); case 3: return mh.invokeExact(fn, selfObj, getArg(args, 0)); case 4: return mh.invokeExact(fn, selfObj, getArg(args, 0), getArg(args, 1)); case 5: return mh.invokeExact(fn, selfObj, getArg(args, 0), getArg(args, 1), getArg(args, 2)); case 6: return mh.invokeExact(fn, selfObj, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3)); case 7: return mh.invokeExact(fn, selfObj, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3), getArg(args, 4)); case 8: return mh.invokeExact(fn, selfObj, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3), getArg(args, 4), getArg(args, 5)); default: return mh.invokeWithArguments(withArguments(fn, selfObj, paramCount, args)); } } switch (paramCount) { case 1: return mh.invokeExact(selfObj); case 2: return mh.invokeExact(selfObj, getArg(args, 0)); case 3: return mh.invokeExact(selfObj, getArg(args, 0), getArg(args, 1)); case 4: return mh.invokeExact(selfObj, getArg(args, 0), getArg(args, 1), getArg(args, 2)); case 5: return mh.invokeExact(selfObj, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3)); case 6: return mh.invokeExact(selfObj, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3), getArg(args, 4)); case 7: return mh.invokeExact(selfObj, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3), getArg(args, 4), getArg(args, 5)); default: return mh.invokeWithArguments(withArguments(null, selfObj, paramCount, args)); } } Object construct(final ScriptFunction fn, final Object... arguments) throws Throwable { final MethodHandle mh = getGenericConstructor(fn.getScope()); final Object[] args = arguments == null ? ScriptRuntime.EMPTY_ARRAY : arguments; DebuggerSupport.notifyInvoke(mh); if (isVarArg(mh)) { if (needsCallee(mh)) { return mh.invokeExact(fn, args); } return mh.invokeExact(args); } final int paramCount = mh.type().parameterCount(); if (needsCallee(mh)) { switch (paramCount) { case 1: return mh.invokeExact(fn); case 2: return mh.invokeExact(fn, getArg(args, 0)); case 3: return mh.invokeExact(fn, getArg(args, 0), getArg(args, 1)); case 4: return mh.invokeExact(fn, getArg(args, 0), getArg(args, 1), getArg(args, 2)); case 5: return mh.invokeExact(fn, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3)); case 6: return mh.invokeExact(fn, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3), getArg(args, 4)); case 7: return mh.invokeExact(fn, getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3), getArg(args, 4), getArg(args, 5)); default: return mh.invokeWithArguments(withArguments(fn, paramCount, args)); } } switch (paramCount) { case 0: return mh.invokeExact(); case 1: return mh.invokeExact(getArg(args, 0)); case 2: return mh.invokeExact(getArg(args, 0), getArg(args, 1)); case 3: return mh.invokeExact(getArg(args, 0), getArg(args, 1), getArg(args, 2)); case 4: return mh.invokeExact(getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3)); case 5: return mh.invokeExact(getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3), getArg(args, 4)); case 6: return mh.invokeExact(getArg(args, 0), getArg(args, 1), getArg(args, 2), getArg(args, 3), getArg(args, 4), getArg(args, 5)); default: return mh.invokeWithArguments(withArguments(null, paramCount, args)); } } private static Object getArg(final Object[] args, final int i) { return i < args.length ? args[i] : UNDEFINED; } private static Object[] withArguments(final ScriptFunction fn, final int argCount, final Object[] args) { final Object[] finalArgs = new Object[argCount]; int nextArg = 0; if (fn != null) { //needs callee finalArgs[nextArg++] = fn; } // Don't add more args that there is argCount in the handle (including self and callee). for (int i = 0; i < args.length && nextArg < argCount;) { finalArgs[nextArg++] = args[i++]; } // If we have fewer args than argCount, pad with undefined. while (nextArg < argCount) { finalArgs[nextArg++] = UNDEFINED; } return finalArgs; } private static Object[] withArguments(final ScriptFunction fn, final Object self, final int argCount, final Object[] args) { final Object[] finalArgs = new Object[argCount]; int nextArg = 0; if (fn != null) { //needs callee finalArgs[nextArg++] = fn; } finalArgs[nextArg++] = self; // Don't add more args that there is argCount in the handle (including self and callee). for (int i = 0; i < args.length && nextArg < argCount;) { finalArgs[nextArg++] = args[i++]; } // If we have fewer args than argCount, pad with undefined. while (nextArg < argCount) { finalArgs[nextArg++] = UNDEFINED; } return finalArgs; } /** * Takes a variable-arity method and binds a variable number of arguments in it. The returned method will filter the * vararg array and pass a different array that prepends the bound arguments in front of the arguments passed on * invocation * * @param mh the handle * @param args the bound arguments * * @return the bound method handle */ private static MethodHandle varArgBinder(final MethodHandle mh, final Object[] args) { assert args != null; assert args.length > 0; return MH.filterArguments(mh, mh.type().parameterCount() - 1, MH.bindTo(BIND_VAR_ARGS, args)); } /** * Heuristic to figure out if the method handle has a callee argument. If it's type is * {@code (ScriptFunction, ...)}, then we'll assume it has a callee argument. We need this as * the constructor above is not passed this information, and can't just blindly assume it's false * (notably, it's being invoked for creation of new scripts, and scripts have scopes, therefore * they also always receive a callee). * * @param mh the examined method handle * * @return true if the method handle expects a callee, false otherwise */ protected static boolean needsCallee(final MethodHandle mh) { return needsCallee(mh.type()); } static boolean needsCallee(final MethodType type) { final int length = type.parameterCount(); if (length == 0) { return false; } final Class<?> param0 = type.parameterType(0); return param0 == ScriptFunction.class || param0 == boolean.class && length > 1 && type.parameterType(1) == ScriptFunction.class; } /** * Check if a javascript function methodhandle is a vararg handle * * @param mh method handle to check * * @return true if vararg */ protected static boolean isVarArg(final MethodHandle mh) { return isVarArg(mh.type()); } static boolean isVarArg(final MethodType type) { return type.parameterType(type.parameterCount() - 1).isArray(); } /** * Is this ScriptFunction declared in a dynamic context * @return true if in dynamic context, false if not or irrelevant */ public boolean inDynamicContext() { return false; } @SuppressWarnings("unused") private static Object[] bindVarArgs(final Object[] array1, final Object[] array2) { if (array2 == null) { // Must clone it, as we can't allow the receiving method to alter the array return array1.clone(); } final int l2 = array2.length; if (l2 == 0) { return array1.clone(); } final int l1 = array1.length; final Object[] concat = new Object[l1 + l2]; System.arraycopy(array1, 0, concat, 0, l1); System.arraycopy(array2, 0, concat, l1, l2); return concat; } private static MethodHandle findOwnMH(final String name, final Class<?> rtype, final Class<?>... types) { return MH.findStatic(MethodHandles.lookup(), ScriptFunctionData.class, name, MH.type(rtype, types)); } /** * This class is used to hold the generic invoker and generic constructor pair. It is structured in this way since * most functions will never use them, so this way ScriptFunctionData only pays storage cost for one null reference * to the GenericInvokers object, instead of two null references for the two method handles. */ private static final class GenericInvokers { volatile MethodHandle invoker; volatile MethodHandle constructor; } private void readObject(final ObjectInputStream in) throws IOException, ClassNotFoundException { in.defaultReadObject(); code = new LinkedList<>(); } }