/* * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ // This file is available under and governed by the GNU General Public // License version 2 only, as published by the Free Software Foundation. // However, the following notice accompanied the original version of this // file: // // Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package jdk.nashorn.internal.runtime.doubleconv; import java.util.Arrays; class Bignum { // 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately. // This bignum can encode much bigger numbers, since it contains an // exponent. static final int kMaxSignificantBits = 3584; static final int kChunkSize = 32; // size of int static final int kDoubleChunkSize = 64; // size of long // With bigit size of 28 we loose some bits, but a double still fits easily // into two ints, and more importantly we can use the Comba multiplication. static final int kBigitSize = 28; static final int kBigitMask = (1 << kBigitSize) - 1; // Every instance allocates kbigitLength ints on the stack. Bignums cannot // grow. There are no checks if the stack-allocated space is sufficient. static final int kBigitCapacity = kMaxSignificantBits / kBigitSize; private final int[] bigits_ = new int[kBigitCapacity]; // A vector backed by bigits_buffer_. This way accesses to the array are // checked for out-of-bounds errors. // Vector<int> bigits_; private int used_digits_; // The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize). private int exponent_; Bignum() {} void times10() { multiplyByUInt32(10); } static boolean equal(final Bignum a, final Bignum b) { return compare(a, b) == 0; } static boolean lessEqual(final Bignum a, final Bignum b) { return compare(a, b) <= 0; } static boolean less(final Bignum a, final Bignum b) { return compare(a, b) < 0; } // Returns a + b == c static boolean plusEqual(final Bignum a, final Bignum b, final Bignum c) { return plusCompare(a, b, c) == 0; } // Returns a + b <= c static boolean plusLessEqual(final Bignum a, final Bignum b, final Bignum c) { return plusCompare(a, b, c) <= 0; } // Returns a + b < c static boolean plusLess(final Bignum a, final Bignum b, final Bignum c) { return plusCompare(a, b, c) < 0; } private void ensureCapacity(final int size) { if (size > kBigitCapacity) { throw new RuntimeException(); } } // BigitLength includes the "hidden" digits encoded in the exponent. int bigitLength() { return used_digits_ + exponent_; } // Guaranteed to lie in one Bigit. void assignUInt16(final char value) { assert (kBigitSize >= 16); zero(); if (value == 0) return; ensureCapacity(1); bigits_[0] = value; used_digits_ = 1; } void assignUInt64(long value) { final int kUInt64Size = 64; zero(); if (value == 0) return; final int needed_bigits = kUInt64Size / kBigitSize + 1; ensureCapacity(needed_bigits); for (int i = 0; i < needed_bigits; ++i) { bigits_[i] = (int) (value & kBigitMask); value = value >>> kBigitSize; } used_digits_ = needed_bigits; clamp(); } void assignBignum(final Bignum other) { exponent_ = other.exponent_; for (int i = 0; i < other.used_digits_; ++i) { bigits_[i] = other.bigits_[i]; } // Clear the excess digits (if there were any). for (int i = other.used_digits_; i < used_digits_; ++i) { bigits_[i] = 0; } used_digits_ = other.used_digits_; } static long readUInt64(final String str, final int from, final int digits_to_read) { long result = 0; for (int i = from; i < from + digits_to_read; ++i) { final int digit = str.charAt(i) - '0'; assert (0 <= digit && digit <= 9); result = result * 10 + digit; } return result; } void assignDecimalString(final String str) { // 2^64 = 18446744073709551616 > 10^19 final int kMaxUint64DecimalDigits = 19; zero(); int length = str.length(); int pos = 0; // Let's just say that each digit needs 4 bits. while (length >= kMaxUint64DecimalDigits) { final long digits = readUInt64(str, pos, kMaxUint64DecimalDigits); pos += kMaxUint64DecimalDigits; length -= kMaxUint64DecimalDigits; multiplyByPowerOfTen(kMaxUint64DecimalDigits); addUInt64(digits); } final long digits = readUInt64(str, pos, length); multiplyByPowerOfTen(length); addUInt64(digits); clamp(); } static int hexCharValue(final char c) { if ('0' <= c && c <= '9') return c - '0'; if ('a' <= c && c <= 'f') return 10 + c - 'a'; assert ('A' <= c && c <= 'F'); return 10 + c - 'A'; } void assignHexString(final String str) { zero(); final int length = str.length(); final int needed_bigits = length * 4 / kBigitSize + 1; ensureCapacity(needed_bigits); int string_index = length - 1; for (int i = 0; i < needed_bigits - 1; ++i) { // These bigits are guaranteed to be "full". int current_bigit = 0; for (int j = 0; j < kBigitSize / 4; j++) { current_bigit += hexCharValue(str.charAt(string_index--)) << (j * 4); } bigits_[i] = current_bigit; } used_digits_ = needed_bigits - 1; int most_significant_bigit = 0; // Could be = 0; for (int j = 0; j <= string_index; ++j) { most_significant_bigit <<= 4; most_significant_bigit += hexCharValue(str.charAt(j)); } if (most_significant_bigit != 0) { bigits_[used_digits_] = most_significant_bigit; used_digits_++; } clamp(); } void addUInt64(final long operand) { if (operand == 0) return; final Bignum other = new Bignum(); other.assignUInt64(operand); addBignum(other); } void addBignum(final Bignum other) { assert (isClamped()); assert (other.isClamped()); // If this has a greater exponent than other append zero-bigits to this. // After this call exponent_ <= other.exponent_. align(other); // There are two possibilities: // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) // bbbbb 00000000 // ---------------- // ccccccccccc 0000 // or // aaaaaaaaaa 0000 // bbbbbbbbb 0000000 // ----------------- // cccccccccccc 0000 // In both cases we might need a carry bigit. ensureCapacity(1 + Math.max(bigitLength(), other.bigitLength()) - exponent_); int carry = 0; int bigit_pos = other.exponent_ - exponent_; assert (bigit_pos >= 0); for (int i = 0; i < other.used_digits_; ++i) { final int sum = bigits_[bigit_pos] + other.bigits_[i] + carry; bigits_[bigit_pos] = sum & kBigitMask; carry = sum >>> kBigitSize; bigit_pos++; } while (carry != 0) { final int sum = bigits_[bigit_pos] + carry; bigits_[bigit_pos] = sum & kBigitMask; carry = sum >>> kBigitSize; bigit_pos++; } used_digits_ = Math.max(bigit_pos, used_digits_); assert (isClamped()); } void subtractBignum(final Bignum other) { assert (isClamped()); assert (other.isClamped()); // We require this to be bigger than other. assert (lessEqual(other, this)); align(other); final int offset = other.exponent_ - exponent_; int borrow = 0; int i; for (i = 0; i < other.used_digits_; ++i) { assert ((borrow == 0) || (borrow == 1)); final int difference = bigits_[i + offset] - other.bigits_[i] - borrow; bigits_[i + offset] = difference & kBigitMask; borrow = difference >>> (kChunkSize - 1); } while (borrow != 0) { final int difference = bigits_[i + offset] - borrow; bigits_[i + offset] = difference & kBigitMask; borrow = difference >>> (kChunkSize - 1); ++i; } clamp(); } void shiftLeft(final int shift_amount) { if (used_digits_ == 0) return; exponent_ += shift_amount / kBigitSize; final int local_shift = shift_amount % kBigitSize; ensureCapacity(used_digits_ + 1); bigitsShiftLeft(local_shift); } void multiplyByUInt32(final int factor) { if (factor == 1) return; if (factor == 0) { zero(); return; } if (used_digits_ == 0) return; // The product of a bigit with the factor is of size kBigitSize + 32. // Assert that this number + 1 (for the carry) fits into double int. assert (kDoubleChunkSize >= kBigitSize + 32 + 1); long carry = 0; for (int i = 0; i < used_digits_; ++i) { final long product = (factor & 0xFFFFFFFFL) * bigits_[i] + carry; bigits_[i] = (int) (product & kBigitMask); carry = product >>> kBigitSize; } while (carry != 0) { ensureCapacity(used_digits_ + 1); bigits_[used_digits_] = (int) (carry & kBigitMask); used_digits_++; carry >>>= kBigitSize; } } void multiplyByUInt64(final long factor) { if (factor == 1) return; if (factor == 0) { zero(); return; } assert (kBigitSize < 32); long carry = 0; final long low = factor & 0xFFFFFFFFL; final long high = factor >>> 32; for (int i = 0; i < used_digits_; ++i) { final long product_low = low * bigits_[i]; final long product_high = high * bigits_[i]; final long tmp = (carry & kBigitMask) + product_low; bigits_[i] = (int) (tmp & kBigitMask); carry = (carry >>> kBigitSize) + (tmp >>> kBigitSize) + (product_high << (32 - kBigitSize)); } while (carry != 0) { ensureCapacity(used_digits_ + 1); bigits_[used_digits_] = (int) (carry & kBigitMask); used_digits_++; carry >>>= kBigitSize; } } void multiplyByPowerOfTen(final int exponent) { final long kFive27 = 0x6765c793fa10079dL; final int kFive1 = 5; final int kFive2 = kFive1 * 5; final int kFive3 = kFive2 * 5; final int kFive4 = kFive3 * 5; final int kFive5 = kFive4 * 5; final int kFive6 = kFive5 * 5; final int kFive7 = kFive6 * 5; final int kFive8 = kFive7 * 5; final int kFive9 = kFive8 * 5; final int kFive10 = kFive9 * 5; final int kFive11 = kFive10 * 5; final int kFive12 = kFive11 * 5; final int kFive13 = kFive12 * 5; final int kFive1_to_12[] = { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; assert (exponent >= 0); if (exponent == 0) return; if (used_digits_ == 0) return; // We shift by exponent at the end just before returning. int remaining_exponent = exponent; while (remaining_exponent >= 27) { multiplyByUInt64(kFive27); remaining_exponent -= 27; } while (remaining_exponent >= 13) { multiplyByUInt32(kFive13); remaining_exponent -= 13; } if (remaining_exponent > 0) { multiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); } shiftLeft(exponent); } void square() { assert (isClamped()); final int product_length = 2 * used_digits_; ensureCapacity(product_length); // Comba multiplication: compute each column separately. // Example: r = a2a1a0 * b2b1b0. // r = 1 * a0b0 + // 10 * (a1b0 + a0b1) + // 100 * (a2b0 + a1b1 + a0b2) + // 1000 * (a2b1 + a1b2) + // 10000 * a2b2 // // In the worst case we have to accumulate nb-digits products of digit*digit. // // Assert that the additional number of bits in a DoubleChunk are enough to // sum up used_digits of Bigit*Bigit. if ((1L << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { throw new RuntimeException("unimplemented"); } long accumulator = 0; // First shift the digits so we don't overwrite them. final int copy_offset = used_digits_; for (int i = 0; i < used_digits_; ++i) { bigits_[copy_offset + i] = bigits_[i]; } // We have two loops to avoid some 'if's in the loop. for (int i = 0; i < used_digits_; ++i) { // Process temporary digit i with power i. // The sum of the two indices must be equal to i. int bigit_index1 = i; int bigit_index2 = 0; // Sum all of the sub-products. while (bigit_index1 >= 0) { final int int1 = bigits_[copy_offset + bigit_index1]; final int int2 = bigits_[copy_offset + bigit_index2]; accumulator += ((long) int1) * int2; bigit_index1--; bigit_index2++; } bigits_[i] = (int) (accumulator & kBigitMask); accumulator >>>= kBigitSize; } for (int i = used_digits_; i < product_length; ++i) { int bigit_index1 = used_digits_ - 1; int bigit_index2 = i - bigit_index1; // Invariant: sum of both indices is again equal to i. // Inner loop runs 0 times on last iteration, emptying accumulator. while (bigit_index2 < used_digits_) { final int int1 = bigits_[copy_offset + bigit_index1]; final int int2 = bigits_[copy_offset + bigit_index2]; accumulator += ((long) int1) * int2; bigit_index1--; bigit_index2++; } // The overwritten bigits_[i] will never be read in further loop iterations, // because bigit_index1 and bigit_index2 are always greater // than i - used_digits_. bigits_[i] = (int) (accumulator & kBigitMask); accumulator >>>= kBigitSize; } // Since the result was guaranteed to lie inside the number the // accumulator must be 0 now. assert (accumulator == 0); // Don't forget to update the used_digits and the exponent. used_digits_ = product_length; exponent_ *= 2; clamp(); } void assignPowerUInt16(int base, final int power_exponent) { assert (base != 0); assert (power_exponent >= 0); if (power_exponent == 0) { assignUInt16((char) 1); return; } zero(); int shifts = 0; // We expect base to be in range 2-32, and most often to be 10. // It does not make much sense to implement different algorithms for counting // the bits. while ((base & 1) == 0) { base >>>= 1; shifts++; } int bit_size = 0; int tmp_base = base; while (tmp_base != 0) { tmp_base >>>= 1; bit_size++; } final int final_size = bit_size * power_exponent; // 1 extra bigit for the shifting, and one for rounded final_size. ensureCapacity(final_size / kBigitSize + 2); // Left to Right exponentiation. int mask = 1; while (power_exponent >= mask) mask <<= 1; // The mask is now pointing to the bit above the most significant 1-bit of // power_exponent. // Get rid of first 1-bit; mask >>>= 2; long this_value = base; boolean delayed_multipliciation = false; final long max_32bits = 0xFFFFFFFFL; while (mask != 0 && this_value <= max_32bits) { this_value = this_value * this_value; // Verify that there is enough space in this_value to perform the // multiplication. The first bit_size bits must be 0. if ((power_exponent & mask) != 0) { final long base_bits_mask = ~((1L << (64 - bit_size)) - 1); final boolean high_bits_zero = (this_value & base_bits_mask) == 0; if (high_bits_zero) { this_value *= base; } else { delayed_multipliciation = true; } } mask >>>= 1; } assignUInt64(this_value); if (delayed_multipliciation) { multiplyByUInt32(base); } // Now do the same thing as a bignum. while (mask != 0) { square(); if ((power_exponent & mask) != 0) { multiplyByUInt32(base); } mask >>>= 1; } // And finally add the saved shifts. shiftLeft(shifts * power_exponent); } // Precondition: this/other < 16bit. char divideModuloIntBignum(final Bignum other) { assert (isClamped()); assert (other.isClamped()); assert (other.used_digits_ > 0); // Easy case: if we have less digits than the divisor than the result is 0. // Note: this handles the case where this == 0, too. if (bigitLength() < other.bigitLength()) { return 0; } align(other); char result = 0; // Start by removing multiples of 'other' until both numbers have the same // number of digits. while (bigitLength() > other.bigitLength()) { // This naive approach is extremely inefficient if `this` divided by other // is big. This function is implemented for doubleToString where // the result should be small (less than 10). assert (other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); assert (bigits_[used_digits_ - 1] < 0x10000); // Remove the multiples of the first digit. // Example this = 23 and other equals 9. -> Remove 2 multiples. result += (bigits_[used_digits_ - 1]); subtractTimes(other, bigits_[used_digits_ - 1]); } assert (bigitLength() == other.bigitLength()); // Both bignums are at the same length now. // Since other has more than 0 digits we know that the access to // bigits_[used_digits_ - 1] is safe. final int this_bigit = bigits_[used_digits_ - 1]; final int other_bigit = other.bigits_[other.used_digits_ - 1]; if (other.used_digits_ == 1) { // Shortcut for easy (and common) case. final int quotient = Integer.divideUnsigned(this_bigit, other_bigit); bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; assert (Integer.compareUnsigned(quotient, 0x10000) < 0); result += quotient; clamp(); return result; } final int division_estimate = Integer.divideUnsigned(this_bigit, (other_bigit + 1)); assert (Integer.compareUnsigned(division_estimate, 0x10000) < 0); result += division_estimate; subtractTimes(other, division_estimate); if (other_bigit * (division_estimate + 1) > this_bigit) { // No need to even try to subtract. Even if other's remaining digits were 0 // another subtraction would be too much. return result; } while (lessEqual(other, this)) { subtractBignum(other); result++; } return result; } static int sizeInHexChars(int number) { assert (number > 0); int result = 0; while (number != 0) { number >>>= 4; result++; } return result; } static char hexCharOfValue(final int value) { assert (0 <= value && value <= 16); if (value < 10) return (char) (value + '0'); return (char) (value - 10 + 'A'); } String toHexString() { assert (isClamped()); // Each bigit must be printable as separate hex-character. assert (kBigitSize % 4 == 0); final int kHexCharsPerBigit = kBigitSize / 4; if (used_digits_ == 0) { return "0"; } final int needed_chars = (bigitLength() - 1) * kHexCharsPerBigit + sizeInHexChars(bigits_[used_digits_ - 1]); final StringBuilder buffer = new StringBuilder(needed_chars); buffer.setLength(needed_chars); int string_index = needed_chars - 1; for (int i = 0; i < exponent_; ++i) { for (int j = 0; j < kHexCharsPerBigit; ++j) { buffer.setCharAt(string_index--, '0'); } } for (int i = 0; i < used_digits_ - 1; ++i) { int current_bigit = bigits_[i]; for (int j = 0; j < kHexCharsPerBigit; ++j) { buffer.setCharAt(string_index--, hexCharOfValue(current_bigit & 0xF)); current_bigit >>>= 4; } } // And finally the last bigit. int most_significant_bigit = bigits_[used_digits_ - 1]; while (most_significant_bigit != 0) { buffer.setCharAt(string_index--, hexCharOfValue(most_significant_bigit & 0xF)); most_significant_bigit >>>= 4; } return buffer.toString(); } int bigitAt(final int index) { if (index >= bigitLength()) return 0; if (index < exponent_) return 0; return bigits_[index - exponent_]; } static int compare(final Bignum a, final Bignum b) { assert (a.isClamped()); assert (b.isClamped()); final int bigit_length_a = a.bigitLength(); final int bigit_length_b = b.bigitLength(); if (bigit_length_a < bigit_length_b) return -1; if (bigit_length_a > bigit_length_b) return +1; for (int i = bigit_length_a - 1; i >= Math.min(a.exponent_, b.exponent_); --i) { final int bigit_a = a.bigitAt(i); final int bigit_b = b.bigitAt(i); if (bigit_a < bigit_b) return -1; if (bigit_a > bigit_b) return +1; // Otherwise they are equal up to this digit. Try the next digit. } return 0; } static int plusCompare(final Bignum a, final Bignum b, final Bignum c) { assert (a.isClamped()); assert (b.isClamped()); assert (c.isClamped()); if (a.bigitLength() < b.bigitLength()) { return plusCompare(b, a, c); } if (a.bigitLength() + 1 < c.bigitLength()) return -1; if (a.bigitLength() > c.bigitLength()) return +1; // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one // of 'a'. if (a.exponent_ >= b.bigitLength() && a.bigitLength() < c.bigitLength()) { return -1; } int borrow = 0; // Starting at min_exponent all digits are == 0. So no need to compare them. final int min_exponent = Math.min(Math.min(a.exponent_, b.exponent_), c.exponent_); for (int i = c.bigitLength() - 1; i >= min_exponent; --i) { final int int_a = a.bigitAt(i); final int int_b = b.bigitAt(i); final int int_c = c.bigitAt(i); final int sum = int_a + int_b; if (sum > int_c + borrow) { return +1; } else { borrow = int_c + borrow - sum; if (borrow > 1) return -1; borrow <<= kBigitSize; } } if (borrow == 0) return 0; return -1; } void clamp() { while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { used_digits_--; } if (used_digits_ == 0) { // Zero. exponent_ = 0; } } boolean isClamped() { return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; } void zero() { for (int i = 0; i < used_digits_; ++i) { bigits_[i] = 0; } used_digits_ = 0; exponent_ = 0; } void align(final Bignum other) { if (exponent_ > other.exponent_) { // If "X" represents a "hidden" digit (by the exponent) then we are in the // following case (a == this, b == other): // a: aaaaaaXXXX or a: aaaaaXXX // b: bbbbbbX b: bbbbbbbbXX // We replace some of the hidden digits (X) of a with 0 digits. // a: aaaaaa000X or a: aaaaa0XX final int zero_digits = exponent_ - other.exponent_; ensureCapacity(used_digits_ + zero_digits); for (int i = used_digits_ - 1; i >= 0; --i) { bigits_[i + zero_digits] = bigits_[i]; } for (int i = 0; i < zero_digits; ++i) { bigits_[i] = 0; } used_digits_ += zero_digits; exponent_ -= zero_digits; assert (used_digits_ >= 0); assert (exponent_ >= 0); } } void bigitsShiftLeft(final int shift_amount) { assert (shift_amount < kBigitSize); assert (shift_amount >= 0); int carry = 0; for (int i = 0; i < used_digits_; ++i) { final int new_carry = bigits_[i] >>> (kBigitSize - shift_amount); bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; carry = new_carry; } if (carry != 0) { bigits_[used_digits_] = carry; used_digits_++; } } void subtractTimes(final Bignum other, final int factor) { assert (exponent_ <= other.exponent_); if (factor < 3) { for (int i = 0; i < factor; ++i) { subtractBignum(other); } return; } int borrow = 0; final int exponent_diff = other.exponent_ - exponent_; for (int i = 0; i < other.used_digits_; ++i) { final long product = ((long) factor) * other.bigits_[i]; final long remove = borrow + product; final int difference = bigits_[i + exponent_diff] - (int) (remove & kBigitMask); bigits_[i + exponent_diff] = difference & kBigitMask; borrow = (int) ((difference >>> (kChunkSize - 1)) + (remove >>> kBigitSize)); } for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { if (borrow == 0) return; final int difference = bigits_[i] - borrow; bigits_[i] = difference & kBigitMask; borrow = difference >>> (kChunkSize - 1); } clamp(); } @Override public String toString() { return "Bignum" + Arrays.toString(bigits_); } }