/* * Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang.module; import java.io.PrintStream; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.Deque; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.Objects; import java.util.Optional; import java.util.Set; import java.util.stream.Collectors; import java.util.stream.Stream; /** * The configuration that is the result of resolution or resolution with * service binding. * * <h2><a name="resolution">Resolution</a></h2> * * <p> Resolution is the process of computing the transitive closure of a set * of root modules over a set of observable modules by resolving the * dependences expressed by {@code requires} clauses. * * The <em>dependence graph</em> is augmented with edges that take account of * implicitly declared dependences ({@code requires transitive}) to create a * <em>readability graph</em>. A {@code Configuration} encapsulates the * resulting graph of {@link ResolvedModule resolved modules}. * * <p> Suppose we have the following observable modules: </p> * <pre> {@code * module m1 { requires m2; } * module m2 { requires transitive m3; } * module m3 { } * module m4 { } * } </pre> * * <p> If the module {@code m1} is resolved then the resulting configuration * contains three modules ({@code m1}, {@code m2}, {@code m3}). The edges in * its readability graph are: </p> * <pre> {@code * m1 --> m2 (meaning m1 reads m2) * m1 --> m3 * m2 --> m3 * } </pre> * * <p> Resolution is an additive process. When computing the transitive closure * then the dependence relation may include dependences on modules in parent * configurations. The result is a <em>relative configuration</em> that is * relative to one or more parent configurations and where the readability graph * may have edges from modules in the configuration to modules in parent * configurations. * * </p> * * <p> Suppose we have the following observable modules: </p> * <pre> {@code * module m1 { requires m2; requires java.xml; } * module m2 { } * } </pre> * * <p> If module {@code m1} is resolved with the configuration for the {@link * java.lang.reflect.Layer#boot() boot} layer as the parent then the resulting * configuration contains two modules ({@code m1}, {@code m2}). The edges in * its readability graph are: * <pre> {@code * m1 --> m2 * m1 --> java.xml * } </pre> * where module {@code java.xml} is in the parent configuration. For * simplicity, this example omits the implicitly declared dependence on the * {@code java.base} module. * * <a name="automaticmoduleresolution"></a> * <p> {@link ModuleDescriptor#isAutomatic() Automatic} modules receive special * treatment during resolution. Each automatic module is resolved so that it * reads all other modules in the configuration and all parent configurations. * Each automatic module is also resolved as if it {@code requires transitive} * all other automatic modules in the configuration (and all automatic modules * in parent configurations). </p> * <h2><a name="servicebinding">Service binding</a></h2> * * <p> Service binding is the process of augmenting a graph of resolved modules * from the set of observable modules induced by the service-use dependence * ({@code uses} and {@code provides} clauses). Any module that was not * previously in the graph requires resolution to compute its transitive * closure. Service binding is an iterative process in that adding a module * that satisfies some service-use dependence may introduce new service-use * dependences. </p> * * <p> Suppose we have the following observable modules: </p> * <pre> {@code * module m1 { exports p; uses p.S; } * module m2 { requires m1; provides p.S with p2.S2; } * module m3 { requires m1; requires m4; provides p.S with p3.S3; } * module m4 { } * } </pre> * * <p> If the module {@code m1} is resolved then the resulting graph of modules * has one module ({@code m1}). If the graph is augmented with modules induced * by the service-use dependence relation then the configuration will contain * four modules ({@code m1}, {@code m2}, {@code m3}, {@code m4}). The edges in * its readability graph are: </p> * <pre> {@code * m2 --> m1 * m3 --> m1 * m3 --> m4 * } </pre> * <p> The edges in the conceptual service-use graph are: </p> * <pre> {@code * m1 --> m2 (meaning m1 uses a service that is provided by m2) * m1 --> m3 * } </pre> * * <p> If this configuration is instantiated as a {@code Layer}, and if code in * module {@code m1} uses {@link java.util.ServiceLoader ServiceLoader} to * iterate over implementations of {@code p.S.class}, then it will iterate over * an instance of {@code p2.S2} and {@code p3.S3}. </p> * * <h3> Example </h3> * * <p> The following example uses the {@code resolveRequires} method to resolve * a module named <em>myapp</em> with the configuration for the boot layer as * the parent configuration. It prints the name of each resolved module and * the names of the modules that each module reads. </p> * * <pre>{@code * ModuleFinder finder = ModuleFinder.of(dir1, dir2, dir3); * * Configuration parent = Layer.boot().configuration(); * * Configuration cf = parent.resolveRequires(finder, * ModuleFinder.of(), * Set.of("myapp")); * cf.modules().forEach(m -> { * System.out.format("%s -> %s%n", * m.name(), * m.reads().stream() * .map(ResolvedModule::name) * .collect(Collectors.joining(", "))); * }); * }</pre> * * @since 9 * @see java.lang.reflect.Layer */ public final class Configuration { // @see Configuration#empty() private static final Configuration EMPTY_CONFIGURATION = new Configuration(); // parent configurations, in search order private final List<Configuration> parents; private final Map<ResolvedModule, Set<ResolvedModule>> graph; private final Set<ResolvedModule> modules; private final Map<String, ResolvedModule> nameToModule; private Configuration() { this.parents = Collections.emptyList(); this.graph = Collections.emptyMap(); this.modules = Collections.emptySet(); this.nameToModule = Collections.emptyMap(); } private Configuration(List<Configuration> parents, Resolver resolver, boolean check) { Map<ResolvedModule, Set<ResolvedModule>> g = resolver.finish(this, check); @SuppressWarnings(value = {"rawtypes", "unchecked"}) Entry<String, ResolvedModule>[] nameEntries = (Entry<String, ResolvedModule>[])new Entry[g.size()]; ResolvedModule[] moduleArray = new ResolvedModule[g.size()]; int i = 0; for (ResolvedModule resolvedModule : g.keySet()) { moduleArray[i] = resolvedModule; nameEntries[i] = Map.entry(resolvedModule.name(), resolvedModule); i++; } this.parents = Collections.unmodifiableList(parents); this.graph = g; this.modules = Set.of(moduleArray); this.nameToModule = Map.ofEntries(nameEntries); } /** * Resolves a collection of root modules, with this configuration as its * parent, to create a new configuration. This method works exactly as * specified by the static {@link * #resolveRequires(ModuleFinder,List,ModuleFinder,Collection) resolveRequires} * method when invoked with this configuration as the parent. In other words, * if this configuration is {@code cf} then this method is equivalent to * invoking: * <pre> {@code * Configuration.resolveRequires(before, List.of(cf), after, roots); * }</pre> * * @param before * The <em>before</em> module finder to find modules * @param after * The <em>after</em> module finder to locate modules when a * module cannot be located by the {@code before} module finder * and the module is not in this configuration * @param roots * The possibly-empty collection of module names of the modules * to resolve * * @return The configuration that is the result of resolving the given * root modules * * @throws ResolutionException * If resolution or the post-resolution checks fail * @throws SecurityException * If locating a module is denied by the security manager */ public Configuration resolveRequires(ModuleFinder before, ModuleFinder after, Collection<String> roots) { return resolveRequires(before, List.of(this), after, roots); } /** * Resolves a collection of root modules, with service binding, and with * this configuration as its parent, to create a new configuration. * This method works exactly as specified by the static {@link * #resolveRequiresAndUses(ModuleFinder,List,ModuleFinder,Collection) * resolveRequiresAndUses} method when invoked with this configuration * as the parent. In other words, if this configuration is {@code cf} then * this method is equivalent to invoking: * <pre> {@code * Configuration.resolveRequiresAndUses(before, List.of(cf), after, roots); * }</pre> * * * @param before * The <em>before</em> module finder to find modules * @param after * The <em>after</em> module finder to locate modules when not * located by the {@code before} module finder and this * configuration * @param roots * The possibly-empty collection of module names of the modules * to resolve * * @return The configuration that is the result of resolving the given * root modules * * @throws ResolutionException * If resolution or the post-resolution checks fail * @throws SecurityException * If locating a module is denied by the security manager */ public Configuration resolveRequiresAndUses(ModuleFinder before, ModuleFinder after, Collection<String> roots) { return resolveRequiresAndUses(before, List.of(this), after, roots); } /** * Resolves a collection of root modules, with service binding, and with * the empty configuration as its parent. The post resolution checks * are optionally run. * * This method is used to create the configuration for the boot layer. */ static Configuration resolveRequiresAndUses(ModuleFinder finder, Collection<String> roots, boolean check, PrintStream traceOutput) { List<Configuration> parents = List.of(empty()); Resolver resolver = new Resolver(finder, parents, ModuleFinder.of(), traceOutput); resolver.resolveRequires(roots).resolveUses(); return new Configuration(parents, resolver, check); } /** * Resolves a collection of root modules to create a configuration. * * <p> Each root module is located using the given {@code before} module * finder. If a module is not found then it is located in the parent * configuration as if by invoking the {@link #findModule(String) * findModule} method on each parent in iteration order. If not found then * the module is located using the given {@code after} module finder. The * same search order is used to locate transitive dependences. Root modules * or dependences that are located in a parent configuration are resolved * no further and are not included in the resulting configuration. </p> * * <p> When all modules have been resolved then the resulting dependency * graph is checked to ensure that it does not contain cycles. A * readability graph is constructed and in conjunction with the module * exports and service use, checked for consistency. </p> * * <p> Resolution and the (post-resolution) consistency checks may fail for * following reasons: </p> * * <ul> * <li><p> A root module, or a direct or transitive dependency, is not * found. </p></li> * * <li><p> An error occurs when attempting to find a module. * Possible errors include I/O errors, errors detected parsing a module * descriptor ({@code module-info.class}) or two versions of the same * module are found in the same directory. </p></li> * * <li><p> A cycle is detected, say where module {@code m1} requires * module {@code m2} and {@code m2} requires {@code m1}. </p></li> * * <li><p> Two or more modules in the configuration export the same * package to a module that reads both. This includes the case where a * module {@code M} containing package {@code p} reads another module * that exports {@code p} to {@code M}. </p></li> * * <li><p> A module {@code M} declares that it "{@code uses p.S}" or * "{@code provides p.S with ...}" but package {@code p} is neither in * module {@code M} nor exported to {@code M} by any module that * {@code M} reads. </p></li> * * <li><p> A module {@code M} declares that it * "{@code provides ... with q.T}" but package {@code q} is not in * module {@code M}. </p></li> * * <li><p> Two or more modules in the configuration are specific to * different {@link ModuleDescriptor#osName() operating systems}, * {@link ModuleDescriptor#osArch() architectures}, or {@link * ModuleDescriptor#osVersion() versions}. </p></li> * * <li><p> Other implementation specific checks, for example referential * integrity checks to ensure that different versions of tighly coupled * modules cannot be combined in the same configuration. </p></li> * * </ul> * * @param before * The <em>before</em> module finder to find modules * @param parents * The list parent configurations in search order * @param after * The <em>after</em> module finder to locate modules when not * located by the {@code before} module finder or in parent * configurations * @param roots * The possibly-empty collection of module names of the modules * to resolve * * @return The configuration that is the result of resolving the given * root modules * * @throws ResolutionException * If resolution or the post-resolution checks fail * @throws IllegalArgumentException * If the list of parents is empty * @throws SecurityException * If locating a module is denied by the security manager */ public static Configuration resolveRequires(ModuleFinder before, List<Configuration> parents, ModuleFinder after, Collection<String> roots) { Objects.requireNonNull(before); Objects.requireNonNull(after); Objects.requireNonNull(roots); List<Configuration> parentList = new ArrayList<>(parents); if (parentList.isEmpty()) throw new IllegalArgumentException("'parents' is empty"); Resolver resolver = new Resolver(before, parentList, after, null); resolver.resolveRequires(roots); return new Configuration(parentList, resolver, true); } /** * Resolves a collection of root modules, with service binding, to create * configuration. * * <p> This method works exactly as specified by {@link * #resolveRequires(ModuleFinder,List,ModuleFinder,Collection) * resolveRequires} except that the graph of resolved modules is augmented * with modules induced by the service-use dependence relation. </p> * * <p> More specifically, the root modules are resolved as if by calling * {@code resolveRequires}. The resolved modules, and all modules in the * parent configurations, with {@link ModuleDescriptor#uses() service * dependences} are then examined. All modules found by the given module * finders that {@link ModuleDescriptor#provides() provide} an * implementation of one or more of the service types are added to the * module graph and then resolved as if by calling the {@code * resolveRequires} method. Adding modules to the module graph may * introduce new service-use dependences and so the process works * iteratively until no more modules are added. </p> * * <p> As service binding involves resolution then it may fail with {@link * ResolutionException} for exactly the same reasons specified in * {@code resolveRequires}. </p> * * @param before * The <em>before</em> module finder to find modules * @param parents * The list parent configurations in search order * @param after * The <em>after</em> module finder to locate modules when not * located by the {@code before} module finder or in parent * configurations * @param roots * The possibly-empty collection of module names of the modules * to resolve * * @return The configuration that is the result of resolving the given * root modules * * @throws ResolutionException * If resolution or the post-resolution checks fail * @throws IllegalArgumentException * If the list of parents is empty * @throws SecurityException * If locating a module is denied by the security manager */ public static Configuration resolveRequiresAndUses(ModuleFinder before, List<Configuration> parents, ModuleFinder after, Collection<String> roots) { Objects.requireNonNull(before); Objects.requireNonNull(after); Objects.requireNonNull(roots); List<Configuration> parentList = new ArrayList<>(parents); if (parentList.isEmpty()) throw new IllegalArgumentException("'parents' is empty"); Resolver resolver = new Resolver(before, parentList, after, null); resolver.resolveRequires(roots).resolveUses(); return new Configuration(parentList, resolver, true); } /** * Returns the <em>empty</em> configuration. There are no modules in the * empty configuration. It has no parents. * * @return The empty configuration */ public static Configuration empty() { return EMPTY_CONFIGURATION; } /** * Returns an unmodifiable list of this configuration's parents, in search * order. If this is the {@linkplain #empty empty configuration} then an * empty list is returned. * * @return A possibly-empty unmodifiable list of this parent configurations */ public List<Configuration> parents() { return parents; } /** * Returns an immutable set of the resolved modules in this configuration. * * @return A possibly-empty unmodifiable set of the resolved modules * in this configuration */ public Set<ResolvedModule> modules() { return modules; } /** * Finds a resolved module in this configuration, or if not in this * configuration, the {@linkplain #parents parent} configurations. * Finding a module in parent configurations is equivalent to invoking * {@code findModule} on each parent, in search order, until the module * is found or all parents have been searched. In a <em>tree of * configurations</em> then this is equivalent to a depth-first search. * * @param name * The module name of the resolved module to find * * @return The resolved module with the given name or an empty {@code * Optional} if there isn't a module with this name in this * configuration or any parent configurations */ public Optional<ResolvedModule> findModule(String name) { Objects.requireNonNull(name); ResolvedModule m = nameToModule.get(name); if (m != null) return Optional.of(m); if (!parents.isEmpty()) { return configurations() .skip(1) // skip this configuration .map(cf -> cf.nameToModule) .filter(map -> map.containsKey(name)) .map(map -> map.get(name)) .findFirst(); } return Optional.empty(); } Set<ModuleDescriptor> descriptors() { if (modules.isEmpty()) { return Collections.emptySet(); } else { return modules.stream() .map(ResolvedModule::reference) .map(ModuleReference::descriptor) .collect(Collectors.toSet()); } } Set<ResolvedModule> reads(ResolvedModule m) { return Collections.unmodifiableSet(graph.get(m)); } /** * Returns an ordered stream of configurations. The first element is this * configuration, the remaining elements are the parent configurations * in DFS order. * * @implNote For now, the assumption is that the number of elements will * be very low and so this method does not use a specialized spliterator. */ Stream<Configuration> configurations() { List<Configuration> allConfigurations = this.allConfigurations; if (allConfigurations == null) { allConfigurations = new ArrayList<>(); Set<Configuration> visited = new HashSet<>(); Deque<Configuration> stack = new ArrayDeque<>(); visited.add(this); stack.push(this); while (!stack.isEmpty()) { Configuration layer = stack.pop(); allConfigurations.add(layer); // push in reverse order for (int i = layer.parents.size() - 1; i >= 0; i--) { Configuration parent = layer.parents.get(i); if (!visited.contains(parent)) { visited.add(parent); stack.push(parent); } } } this.allConfigurations = Collections.unmodifiableList(allConfigurations); } return allConfigurations.stream(); } private volatile List<Configuration> allConfigurations; /** * Returns a string describing this configuration. * * @return A possibly empty string describing this configuration */ @Override public String toString() { return modules().stream() .map(ResolvedModule::name) .collect(Collectors.joining(", ")); } }