/* * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.tools.jdeps; import java.io.PrintWriter; import java.lang.module.ModuleDescriptor; import java.lang.module.ModuleFinder; import java.lang.module.ModuleReference; import java.util.Collections; import java.util.Deque; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.Map; import java.util.Set; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.stream.Collectors; import java.util.stream.Stream; public final class Graph<T> { private final Set<T> nodes; private final Map<T, Set<T>> edges; public Graph(Set<T> nodes, Map<T, Set<T>> edges) { this.nodes = Collections.unmodifiableSet(nodes); this.edges = Collections.unmodifiableMap(edges); } public Set<T> nodes() { return nodes; } public Map<T, Set<T>> edges() { return edges; } public Set<T> adjacentNodes(T u) { return edges.get(u); } public boolean contains(T u) { return nodes.contains(u); } public Set<Edge<T>> edgesFrom(T u) { return edges.get(u).stream() .map(v -> new Edge<T>(u, v)) .collect(Collectors.toSet()); } /** * Returns a new Graph after transitive reduction */ public Graph<T> reduce() { Builder<T> builder = new Builder<>(); nodes.stream() .forEach(u -> { builder.addNode(u); edges.get(u).stream() .filter(v -> !pathExists(u, v, false)) .forEach(v -> builder.addEdge(u, v)); }); return builder.build(); } /** * Returns a new Graph after transitive reduction. All edges in * the given g takes precedence over this graph. * * @throw IllegalArgumentException g must be a subgraph this graph */ public Graph<T> reduce(Graph<T> g) { boolean subgraph = nodes.containsAll(g.nodes) && g.edges.keySet().stream() .allMatch(u -> adjacentNodes(u).containsAll(g.adjacentNodes(u))); if (!subgraph) { throw new IllegalArgumentException(g + " is not a subgraph of " + this); } Builder<T> builder = new Builder<>(); nodes.stream() .forEach(u -> { builder.addNode(u); // filter the edge if there exists a path from u to v in the given g // or there exists another path from u to v in this graph edges.get(u).stream() .filter(v -> !g.pathExists(u, v) && !pathExists(u, v, false)) .forEach(v -> builder.addEdge(u, v)); }); // add the overlapped edges from this graph and the given g g.edges().keySet().stream() .forEach(u -> g.adjacentNodes(u).stream() .filter(v -> isAdjacent(u, v)) .forEach(v -> builder.addEdge(u, v))); return builder.build(); } /** * Returns nodes sorted in topological order. */ public Stream<T> orderedNodes() { TopoSorter<T> sorter = new TopoSorter<>(this); return sorter.result.stream(); } /** * Traverse this graph and performs the given action in topological order */ public void ordered(Consumer<T> action) { TopoSorter<T> sorter = new TopoSorter<>(this); sorter.ordered(action); } /** * Traverses this graph and performs the given action in reverse topological order */ public void reverse(Consumer<T> action) { TopoSorter<T> sorter = new TopoSorter<>(this); sorter.reverse(action); } /** * Returns a transposed graph from this graph */ public Graph<T> transpose() { Builder<T> builder = new Builder<>(); builder.addNodes(nodes); // reverse edges edges.keySet().forEach(u -> { edges.get(u).stream() .forEach(v -> builder.addEdge(v, u)); }); return builder.build(); } /** * Returns all nodes reachable from the given set of roots. */ public Set<T> dfs(Set<T> roots) { Deque<T> deque = new LinkedList<>(roots); Set<T> visited = new HashSet<>(); while (!deque.isEmpty()) { T u = deque.pop(); if (!visited.contains(u)) { visited.add(u); if (contains(u)) { adjacentNodes(u).stream() .filter(v -> !visited.contains(v)) .forEach(deque::push); } } } return visited; } private boolean isAdjacent(T u, T v) { return edges.containsKey(u) && edges.get(u).contains(v); } private boolean pathExists(T u, T v) { return pathExists(u, v, true); } /** * Returns true if there exists a path from u to v in this graph. * If includeAdjacent is false, it returns true if there exists * another path from u to v of distance > 1 */ private boolean pathExists(T u, T v, boolean includeAdjacent) { if (!nodes.contains(u) || !nodes.contains(v)) { return false; } if (includeAdjacent && isAdjacent(u, v)) { return true; } Deque<T> stack = new LinkedList<>(); Set<T> visited = new HashSet<>(); stack.push(u); while (!stack.isEmpty()) { T node = stack.pop(); if (node.equals(v)) { return true; } if (!visited.contains(node)) { visited.add(node); edges.get(node).stream() .filter(e -> includeAdjacent || !node.equals(u) || !e.equals(v)) .forEach(e -> stack.push(e)); } } assert !visited.contains(v); return false; } public void printGraph(PrintWriter out) { out.println("graph for " + nodes); nodes.stream() .forEach(u -> adjacentNodes(u).stream() .forEach(v -> out.format(" %s -> %s%n", u, v))); } @Override public String toString() { return nodes.toString(); } static class Edge<T> { final T u; final T v; Edge(T u, T v) { this.u = u; this.v = v; } @Override public String toString() { return String.format("%s -> %s", u, v); } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || !(o instanceof Edge)) return false; @SuppressWarnings("unchecked") Edge<T> edge = (Edge<T>) o; return u.equals(edge.u) && v.equals(edge.v); } @Override public int hashCode() { int result = u.hashCode(); result = 31 * result + v.hashCode(); return result; } } static class Builder<T> { final Set<T> nodes = new HashSet<>(); final Map<T, Set<T>> edges = new HashMap<>(); public void addNode(T node) { if (nodes.contains(node)) { return; } nodes.add(node); edges.computeIfAbsent(node, _e -> new HashSet<>()); } public void addNodes(Set<T> nodes) { nodes.addAll(nodes); } public void addEdge(T u, T v) { addNode(u); addNode(v); edges.get(u).add(v); } public Graph<T> build() { return new Graph<T>(nodes, edges); } } /** * Topological sort */ static class TopoSorter<T> { final Deque<T> result = new LinkedList<>(); final Deque<T> nodes; final Graph<T> graph; TopoSorter(Graph<T> graph) { this.graph = graph; this.nodes = new LinkedList<>(graph.nodes); sort(); } public void ordered(Consumer<T> action) { result.iterator().forEachRemaining(action); } public void reverse(Consumer<T> action) { result.descendingIterator().forEachRemaining(action); } private void sort() { Deque<T> visited = new LinkedList<>(); Deque<T> done = new LinkedList<>(); T node; while ((node = nodes.poll()) != null) { if (!visited.contains(node)) { visit(node, visited, done); } } } private void visit(T node, Deque<T> visited, Deque<T> done) { if (visited.contains(node)) { if (!done.contains(node)) { throw new IllegalArgumentException("Cyclic detected: " + node + " " + graph.edges().get(node)); } return; } visited.add(node); graph.edges().get(node).stream() .forEach(x -> visit(x, visited, done)); done.add(node); result.addLast(node); } } public static class DotGraph { static final String ORANGE = "#e76f00"; static final String BLUE = "#437291"; static final String GRAY = "#dddddd"; static final String REEXPORTS = ""; static final String REQUIRES = "style=\"dashed\""; static final String REQUIRES_BASE = "color=\"" + GRAY + "\""; static final Set<String> javaModules = modules(name -> (name.startsWith("java.") && !name.equals("java.smartcardio"))); static final Set<String> jdkModules = modules(name -> (name.startsWith("java.") || name.startsWith("jdk.") || name.startsWith("javafx.")) && !javaModules.contains(name)); private static Set<String> modules(Predicate<String> predicate) { return ModuleFinder.ofSystem().findAll() .stream() .map(ModuleReference::descriptor) .map(ModuleDescriptor::name) .filter(predicate) .collect(Collectors.toSet()); } static void printAttributes(PrintWriter out) { out.format(" size=\"25,25\";%n"); out.format(" nodesep=.5;%n"); out.format(" ranksep=1.5;%n"); out.format(" pencolor=transparent;%n"); out.format(" node [shape=plaintext, fontname=\"DejaVuSans\", fontsize=36, margin=\".2,.2\"];%n"); out.format(" edge [penwidth=4, color=\"#999999\", arrowhead=open, arrowsize=2];%n"); } static void printNodes(PrintWriter out, Graph<String> graph) { out.format(" subgraph se {%n"); graph.nodes().stream() .filter(javaModules::contains) .forEach(mn -> out.format(" \"%s\" [fontcolor=\"%s\", group=%s];%n", mn, ORANGE, "java")); out.format(" }%n"); graph.nodes().stream() .filter(jdkModules::contains) .forEach(mn -> out.format(" \"%s\" [fontcolor=\"%s\", group=%s];%n", mn, BLUE, "jdk")); graph.nodes().stream() .filter(mn -> !javaModules.contains(mn) && !jdkModules.contains(mn)) .forEach(mn -> out.format(" \"%s\";%n", mn)); } static void printEdges(PrintWriter out, Graph<String> graph, String node, Set<String> requiresTransitive) { graph.adjacentNodes(node).forEach(dn -> { String attr = dn.equals("java.base") ? REQUIRES_BASE : (requiresTransitive.contains(dn) ? REEXPORTS : REQUIRES); out.format(" \"%s\" -> \"%s\" [%s];%n", node, dn, attr); }); } } }