/* * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.tools.sjavac; import java.io.File; import java.net.URI; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Random; import java.util.Set; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import com.sun.tools.javac.main.Main.Result; import com.sun.tools.sjavac.comp.CompilationService; import com.sun.tools.sjavac.options.Options; import com.sun.tools.sjavac.pubapi.PubApi; import com.sun.tools.sjavac.server.CompilationSubResult; import com.sun.tools.sjavac.server.SysInfo; /** * This transform compiles a set of packages containing Java sources. * The compile request is divided into separate sets of source files. * For each set a separate request thread is dispatched to a javac server * and the meta data is accumulated. The number of sets correspond more or * less to the number of cores. Less so now, than it will in the future. * * <p><b>This is NOT part of any supported API. * If you write code that depends on this, you do so at your own * risk. This code and its internal interfaces are subject to change * or deletion without notice.</b></p> */ public class CompileJavaPackages implements Transformer { // The current limited sharing of data between concurrent JavaCompilers // in the server will not give speedups above 3 cores. Thus this limit. // We hope to improve this in the future. final static int limitOnConcurrency = 3; Options args; public void setExtra(String e) { } public void setExtra(Options a) { args = a; } public boolean transform(final CompilationService sjavac, Map<String,Set<URI>> pkgSrcs, final Set<URI> visibleSources, Map<String,Set<String>> oldPackageDependents, URI destRoot, final Map<String,Set<URI>> packageArtifacts, final Map<String,Map<String, Set<String>>> packageDependencies, final Map<String,Map<String, Set<String>>> packageCpDependencies, final Map<String, PubApi> packagePubapis, final Map<String, PubApi> dependencyPubapis, int debugLevel, boolean incremental, int numCores) { Log.debug("Performing CompileJavaPackages transform..."); boolean rc = true; boolean concurrentCompiles = true; // Fetch the id. final String id = String.valueOf(new Random().nextInt()); // Only keep portfile and sjavac settings.. //String psServerSettings = Util.cleanSubOptions(Util.set("portfile","sjavac","background","keepalive"), sjavac.serverSettings()); SysInfo sysinfo = sjavac.getSysInfo(); int numMBytes = (int)(sysinfo.maxMemory / ((long)(1024*1024))); Log.debug("Server reports "+numMBytes+"MiB of memory and "+sysinfo.numCores+" cores"); if (numCores <= 0) { // Set the requested number of cores to the number of cores on the server. numCores = sysinfo.numCores; Log.debug("Number of jobs not explicitly set, defaulting to "+sysinfo.numCores); } else if (sysinfo.numCores < numCores) { // Set the requested number of cores to the number of cores on the server. Log.debug("Limiting jobs from explicitly set "+numCores+" to cores available on server: "+sysinfo.numCores); numCores = sysinfo.numCores; } else { Log.debug("Number of jobs explicitly set to "+numCores); } // More than three concurrent cores does not currently give a speedup, at least for compiling the jdk // in the OpenJDK. This will change in the future. int numCompiles = numCores; if (numCores > limitOnConcurrency) numCompiles = limitOnConcurrency; // Split the work up in chunks to compiled. int numSources = 0; for (String s : pkgSrcs.keySet()) { Set<URI> ss = pkgSrcs.get(s); numSources += ss.size(); } int sourcesPerCompile = numSources / numCompiles; // For 64 bit Java, it seems we can compile the OpenJDK 8800 files with a 1500M of heap // in a single chunk, with reasonable performance. // For 32 bit java, it seems we need 1G of heap. // Number experimentally determined when compiling the OpenJDK. // Includes space for reasonably efficient garbage collection etc, // Calculating backwards gives us a requirement of // 1500M/8800 = 175 KiB for 64 bit platforms // and 1G/8800 = 119 KiB for 32 bit platform // for each compile..... int kbPerFile = 175; String osarch = System.getProperty("os.arch"); String dataModel = System.getProperty("sun.arch.data.model"); if ("32".equals(dataModel)) { // For 32 bit platforms, assume it is slightly smaller // because of smaller object headers and pointers. kbPerFile = 119; } int numRequiredMBytes = (kbPerFile*numSources)/1024; Log.debug("For os.arch "+osarch+" the empirically determined heap required per file is "+kbPerFile+"KiB"); Log.debug("Server has "+numMBytes+"MiB of heap."); Log.debug("Heuristics say that we need "+numRequiredMBytes+"MiB of heap for all source files."); // Perform heuristics to see how many cores we can use, // or if we have to the work serially in smaller chunks. if (numMBytes < numRequiredMBytes) { // Ouch, cannot fit even a single compile into the heap. // Split it up into several serial chunks. concurrentCompiles = false; // Limit the number of sources for each compile to 500. if (numSources < 500) { numCompiles = 1; sourcesPerCompile = numSources; Log.debug("Compiling as a single source code chunk to stay within heap size limitations!"); } else if (sourcesPerCompile > 500) { // This number is very low, and tuned to dealing with the OpenJDK // where the source is >very< circular! In normal application, // with less circularity the number could perhaps be increased. numCompiles = numSources / 500; sourcesPerCompile = numSources/numCompiles; Log.debug("Compiling source as "+numCompiles+" code chunks serially to stay within heap size limitations!"); } } else { if (numCompiles > 1) { // Ok, we can fit at least one full compilation on the heap. float usagePerCompile = (float)numRequiredMBytes / ((float)numCompiles * (float)0.7); int usage = (int)(usagePerCompile * (float)numCompiles); Log.debug("Heuristics say that for "+numCompiles+" concurrent compiles we need "+usage+"MiB"); if (usage > numMBytes) { // Ouch it does not fit. Reduce to a single chunk. numCompiles = 1; sourcesPerCompile = numSources; // What if the relationship betweem number of compile_chunks and num_required_mbytes // is not linear? Then perhaps 2 chunks would fit where 3 does not. Well, this is // something to experiment upon in the future. Log.debug("Limiting compile to a single thread to stay within heap size limitations!"); } } } Log.debug("Compiling sources in "+numCompiles+" chunk(s)"); // Create the chunks to be compiled. final CompileChunk[] compileChunks = createCompileChunks(pkgSrcs, oldPackageDependents, numCompiles, sourcesPerCompile); if (Log.isDebugging()) { int cn = 1; for (CompileChunk cc : compileChunks) { Log.debug("Chunk "+cn+" for "+id+" ---------------"); cn++; for (URI u : cc.srcs) { Log.debug(""+u); } } } long start = System.currentTimeMillis(); // Prepare compilation calls List<Callable<CompilationSubResult>> compilationCalls = new ArrayList<>(); final Object lock = new Object(); for (int i = 0; i < numCompiles; i++) { CompileChunk cc = compileChunks[i]; if (cc.srcs.isEmpty()) { continue; } String chunkId = id + "-" + String.valueOf(i); Log log = Log.get(); compilationCalls.add(() -> { Log.setLogForCurrentThread(log); CompilationSubResult result = sjavac.compile("n/a", chunkId, args.prepJavacArgs(), Collections.<File>emptyList(), cc.srcs, visibleSources); synchronized (lock) { Util.getLines(result.stdout).forEach(Log::info); Util.getLines(result.stderr).forEach(Log::error); } return result; }); } // Perform compilations and collect results List<CompilationSubResult> subResults = new ArrayList<>(); List<Future<CompilationSubResult>> futs = new ArrayList<>(); ExecutorService exec = Executors.newFixedThreadPool(concurrentCompiles ? compilationCalls.size() : 1); for (Callable<CompilationSubResult> compilationCall : compilationCalls) { futs.add(exec.submit(compilationCall)); } for (Future<CompilationSubResult> fut : futs) { try { subResults.add(fut.get()); } catch (ExecutionException ee) { Log.error("Compilation failed: " + ee.getMessage()); Log.error(ee); } catch (InterruptedException ie) { Log.error("Compilation interrupted: " + ie.getMessage()); Log.error(ie); Thread.currentThread().interrupt(); } } exec.shutdownNow(); // Process each sub result for (CompilationSubResult subResult : subResults) { for (String pkg : subResult.packageArtifacts.keySet()) { Set<URI> pkgArtifacts = subResult.packageArtifacts.get(pkg); packageArtifacts.merge(pkg, pkgArtifacts, Util::union); } for (String pkg : subResult.packageDependencies.keySet()) { packageDependencies.putIfAbsent(pkg, new HashMap<>()); packageDependencies.get(pkg).putAll(subResult.packageDependencies.get(pkg)); } for (String pkg : subResult.packageCpDependencies.keySet()) { packageCpDependencies.putIfAbsent(pkg, new HashMap<>()); packageCpDependencies.get(pkg).putAll(subResult.packageCpDependencies.get(pkg)); } for (String pkg : subResult.packagePubapis.keySet()) { packagePubapis.merge(pkg, subResult.packagePubapis.get(pkg), PubApi::mergeTypes); } for (String pkg : subResult.dependencyPubapis.keySet()) { dependencyPubapis.merge(pkg, subResult.dependencyPubapis.get(pkg), PubApi::mergeTypes); } // Check the return values. if (subResult.result != Result.OK) { rc = false; } } long duration = System.currentTimeMillis() - start; long minutes = duration/60000; long seconds = (duration-minutes*60000)/1000; Log.debug("Compilation of "+numSources+" source files took "+minutes+"m "+seconds+"s"); return rc; } /** * Split up the sources into compile chunks. If old package dependents information * is available, sort the order of the chunks into the most dependent first! * (Typically that chunk contains the java.lang package.) In the future * we could perhaps improve the heuristics to put the sources into even more sensible chunks. * Now the package are simple sorted in alphabetical order and chunked, then the chunks * are sorted on how dependent they are. * * @param pkgSrcs The sources to compile. * @param oldPackageDependents Old package dependents, if non-empty, used to sort the chunks. * @param numCompiles The number of chunks. * @param sourcesPerCompile The number of sources per chunk. * @return */ CompileChunk[] createCompileChunks(Map<String,Set<URI>> pkgSrcs, Map<String,Set<String>> oldPackageDependents, int numCompiles, int sourcesPerCompile) { CompileChunk[] compileChunks = new CompileChunk[numCompiles]; for (int i=0; i<compileChunks.length; ++i) { compileChunks[i] = new CompileChunk(); } // Now go through the packages and spread out the source on the different chunks. int ci = 0; // Sort the packages String[] packageNames = pkgSrcs.keySet().toArray(new String[0]); Arrays.sort(packageNames); String from = null; for (String pkgName : packageNames) { CompileChunk cc = compileChunks[ci]; Set<URI> s = pkgSrcs.get(pkgName); if (cc.srcs.size()+s.size() > sourcesPerCompile && ci < numCompiles-1) { from = null; ci++; cc = compileChunks[ci]; } cc.numPackages++; cc.srcs.addAll(s); // Calculate nice package names to use as information when compiling. String justPkgName = Util.justPackageName(pkgName); // Fetch how many packages depend on this package from the old build state. Set<String> ss = oldPackageDependents.get(pkgName); if (ss != null) { // Accumulate this information onto this chunk. cc.numDependents += ss.size(); } if (from == null || from.trim().equals("")) from = justPkgName; cc.pkgNames.append(justPkgName+"("+s.size()+") "); cc.pkgFromTos = from+" to "+justPkgName; } // If we are compiling serially, sort the chunks, so that the chunk (with the most dependents) (usually the chunk // containing java.lang.Object, is to be compiled first! // For concurrent compilation, this does not matter. Arrays.sort(compileChunks); return compileChunks; } }