/* * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.print; import java.lang.ref.SoftReference; import java.util.Hashtable; import sun.font.CharToGlyphMapper; import sun.font.CompositeFont; import sun.font.Font2D; import sun.font.Font2DHandle; import sun.font.FontManager; import sun.font.FontManagerFactory; import sun.font.FontUtilities; import java.awt.Color; import java.awt.Font; import java.awt.Graphics2D; import java.awt.Image; import java.awt.Paint; import java.awt.Polygon; import java.awt.Shape; import java.awt.geom.Path2D; import java.text.AttributedCharacterIterator; import java.awt.font.FontRenderContext; import java.awt.font.GlyphVector; import java.awt.font.TextAttribute; import java.awt.font.TextLayout; import java.awt.geom.AffineTransform; import java.awt.geom.Arc2D; import java.awt.geom.Ellipse2D; import java.awt.geom.Line2D; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; import java.awt.geom.RoundRectangle2D; import java.awt.geom.PathIterator; import java.awt.image.BufferedImage; import java.awt.image.BufferedImageOp; import java.awt.image.ColorModel; import java.awt.image.DataBuffer; import java.awt.image.DataBufferInt; import java.awt.image.ImageObserver; import java.awt.image.IndexColorModel; import java.awt.image.Raster; import java.awt.image.RenderedImage; import java.awt.image.SampleModel; import java.awt.image.SinglePixelPackedSampleModel; import java.awt.image.VolatileImage; import sun.awt.image.ByteComponentRaster; import sun.awt.image.ToolkitImage; import sun.awt.image.SunWritableRaster; import java.awt.print.PageFormat; import java.awt.print.Printable; import java.awt.print.PrinterException; import java.awt.print.PrinterGraphics; import java.awt.print.PrinterJob; import java.util.Map; public abstract class PathGraphics extends ProxyGraphics2D { private Printable mPainter; private PageFormat mPageFormat; private int mPageIndex; private boolean mCanRedraw; protected boolean printingGlyphVector; protected PathGraphics(Graphics2D graphics, PrinterJob printerJob, Printable painter, PageFormat pageFormat, int pageIndex, boolean canRedraw) { super(graphics, printerJob); mPainter = painter; mPageFormat = pageFormat; mPageIndex = pageIndex; mCanRedraw = canRedraw; } /** * Return the Printable instance responsible for drawing * into this Graphics. */ protected Printable getPrintable() { return mPainter; } /** * Return the PageFormat associated with this page of * Graphics. */ protected PageFormat getPageFormat() { return mPageFormat; } /** * Return the page index associated with this Graphics. */ protected int getPageIndex() { return mPageIndex; } /** * Return true if we are allowed to ask the application * to redraw portions of the page. In general, with the * PrinterJob API, the application can be asked to do a * redraw. When PrinterJob is emulating PrintJob then we * can not. */ public boolean canDoRedraws() { return mCanRedraw; } /** * Redraw a rectanglular area using a proxy graphics */ public abstract void redrawRegion(Rectangle2D region, double scaleX, double scaleY, Shape clip, AffineTransform devTransform) throws PrinterException ; /** * Draws a line, using the current color, between the points * <code>(x1, y1)</code> and <code>(x2, y2)</code> * in this graphics context's coordinate system. * @param x1 the first point's <i>x</i> coordinate. * @param y1 the first point's <i>y</i> coordinate. * @param x2 the second point's <i>x</i> coordinate. * @param y2 the second point's <i>y</i> coordinate. */ public void drawLine(int x1, int y1, int x2, int y2) { Paint paint = getPaint(); try { AffineTransform deviceTransform = getTransform(); if (getClip() != null) { deviceClip(getClip().getPathIterator(deviceTransform)); } deviceDrawLine(x1, y1, x2, y2, (Color) paint); } catch (ClassCastException e) { throw new IllegalArgumentException("Expected a Color instance"); } } /** * Draws the outline of the specified rectangle. * The left and right edges of the rectangle are at * {@code x} and <code>x + width</code>. * The top and bottom edges are at * {@code y} and <code>y + height</code>. * The rectangle is drawn using the graphics context's current color. * @param x the <i>x</i> coordinate * of the rectangle to be drawn. * @param y the <i>y</i> coordinate * of the rectangle to be drawn. * @param width the width of the rectangle to be drawn. * @param height the height of the rectangle to be drawn. * @see java.awt.Graphics#fillRect * @see java.awt.Graphics#clearRect */ public void drawRect(int x, int y, int width, int height) { Paint paint = getPaint(); try { AffineTransform deviceTransform = getTransform(); if (getClip() != null) { deviceClip(getClip().getPathIterator(deviceTransform)); } deviceFrameRect(x, y, width, height, (Color) paint); } catch (ClassCastException e) { throw new IllegalArgumentException("Expected a Color instance"); } } /** * Fills the specified rectangle. * The left and right edges of the rectangle are at * {@code x} and <code>x + width - 1</code>. * The top and bottom edges are at * {@code y} and <code>y + height - 1</code>. * The resulting rectangle covers an area * {@code width} pixels wide by * {@code height} pixels tall. * The rectangle is filled using the graphics context's current color. * @param x the <i>x</i> coordinate * of the rectangle to be filled. * @param y the <i>y</i> coordinate * of the rectangle to be filled. * @param width the width of the rectangle to be filled. * @param height the height of the rectangle to be filled. * @see java.awt.Graphics#clearRect * @see java.awt.Graphics#drawRect */ public void fillRect(int x, int y, int width, int height){ Paint paint = getPaint(); try { AffineTransform deviceTransform = getTransform(); if (getClip() != null) { deviceClip(getClip().getPathIterator(deviceTransform)); } deviceFillRect(x, y, width, height, (Color) paint); } catch (ClassCastException e) { throw new IllegalArgumentException("Expected a Color instance"); } } /** * Clears the specified rectangle by filling it with the background * color of the current drawing surface. This operation does not * use the current paint mode. * <p> * Beginning with Java 1.1, the background color * of offscreen images may be system dependent. Applications should * use {@code setColor} followed by {@code fillRect} to * ensure that an offscreen image is cleared to a specific color. * @param x the <i>x</i> coordinate of the rectangle to clear. * @param y the <i>y</i> coordinate of the rectangle to clear. * @param width the width of the rectangle to clear. * @param height the height of the rectangle to clear. * @see java.awt.Graphics#fillRect(int, int, int, int) * @see java.awt.Graphics#drawRect * @see java.awt.Graphics#setColor(java.awt.Color) * @see java.awt.Graphics#setPaintMode * @see java.awt.Graphics#setXORMode(java.awt.Color) */ public void clearRect(int x, int y, int width, int height) { fill(new Rectangle2D.Float(x, y, width, height), getBackground()); } /** * Draws an outlined round-cornered rectangle using this graphics * context's current color. The left and right edges of the rectangle * are at {@code x} and <code>x + width</code>, * respectively. The top and bottom edges of the rectangle are at * {@code y} and <code>y + height</code>. * @param x the <i>x</i> coordinate of the rectangle to be drawn. * @param y the <i>y</i> coordinate of the rectangle to be drawn. * @param width the width of the rectangle to be drawn. * @param height the height of the rectangle to be drawn. * @param arcWidth the horizontal diameter of the arc * at the four corners. * @param arcHeight the vertical diameter of the arc * at the four corners. * @see java.awt.Graphics#fillRoundRect */ public void drawRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight) { draw(new RoundRectangle2D.Float(x, y, width, height, arcWidth, arcHeight)); } /** * Fills the specified rounded corner rectangle with the current color. * The left and right edges of the rectangle * are at {@code x} and <code>x + width - 1</code>, * respectively. The top and bottom edges of the rectangle are at * {@code y} and <code>y + height - 1</code>. * @param x the <i>x</i> coordinate of the rectangle to be filled. * @param y the <i>y</i> coordinate of the rectangle to be filled. * @param width the width of the rectangle to be filled. * @param height the height of the rectangle to be filled. * @param arcWidth the horizontal diameter * of the arc at the four corners. * @param arcHeight the vertical diameter * of the arc at the four corners. * @see java.awt.Graphics#drawRoundRect */ public void fillRoundRect(int x, int y, int width, int height, int arcWidth, int arcHeight) { fill(new RoundRectangle2D.Float(x, y, width, height, arcWidth, arcHeight)); } /** * Draws the outline of an oval. * The result is a circle or ellipse that fits within the * rectangle specified by the {@code x}, {@code y}, * {@code width}, and {@code height} arguments. * <p> * The oval covers an area that is * <code>width + 1</code> pixels wide * and <code>height + 1</code> pixels tall. * @param x the <i>x</i> coordinate of the upper left * corner of the oval to be drawn. * @param y the <i>y</i> coordinate of the upper left * corner of the oval to be drawn. * @param width the width of the oval to be drawn. * @param height the height of the oval to be drawn. * @see java.awt.Graphics#fillOval * @since 1.0 */ public void drawOval(int x, int y, int width, int height) { draw(new Ellipse2D.Float(x, y, width, height)); } /** * Fills an oval bounded by the specified rectangle with the * current color. * @param x the <i>x</i> coordinate of the upper left corner * of the oval to be filled. * @param y the <i>y</i> coordinate of the upper left corner * of the oval to be filled. * @param width the width of the oval to be filled. * @param height the height of the oval to be filled. * @see java.awt.Graphics#drawOval */ public void fillOval(int x, int y, int width, int height){ fill(new Ellipse2D.Float(x, y, width, height)); } /** * Draws the outline of a circular or elliptical arc * covering the specified rectangle. * <p> * The resulting arc begins at {@code startAngle} and extends * for {@code arcAngle} degrees, using the current color. * Angles are interpreted such that 0 degrees * is at the 3 o'clock position. * A positive value indicates a counter-clockwise rotation * while a negative value indicates a clockwise rotation. * <p> * The center of the arc is the center of the rectangle whose origin * is (<i>x</i>, <i>y</i>) and whose size is specified by the * {@code width} and {@code height} arguments. * <p> * The resulting arc covers an area * <code>width + 1</code> pixels wide * by <code>height + 1</code> pixels tall. * <p> * The angles are specified relative to the non-square extents of * the bounding rectangle such that 45 degrees always falls on the * line from the center of the ellipse to the upper right corner of * the bounding rectangle. As a result, if the bounding rectangle is * noticeably longer in one axis than the other, the angles to the * start and end of the arc segment will be skewed farther along the * longer axis of the bounds. * @param x the <i>x</i> coordinate of the * upper-left corner of the arc to be drawn. * @param y the <i>y</i> coordinate of the * upper-left corner of the arc to be drawn. * @param width the width of the arc to be drawn. * @param height the height of the arc to be drawn. * @param startAngle the beginning angle. * @param arcAngle the angular extent of the arc, * relative to the start angle. * @see java.awt.Graphics#fillArc */ public void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle) { draw(new Arc2D.Float(x, y, width, height, startAngle, arcAngle, Arc2D.OPEN)); } /** * Fills a circular or elliptical arc covering the specified rectangle. * <p> * The resulting arc begins at {@code startAngle} and extends * for {@code arcAngle} degrees. * Angles are interpreted such that 0 degrees * is at the 3 o'clock position. * A positive value indicates a counter-clockwise rotation * while a negative value indicates a clockwise rotation. * <p> * The center of the arc is the center of the rectangle whose origin * is (<i>x</i>, <i>y</i>) and whose size is specified by the * {@code width} and {@code height} arguments. * <p> * The resulting arc covers an area * <code>width + 1</code> pixels wide * by <code>height + 1</code> pixels tall. * <p> * The angles are specified relative to the non-square extents of * the bounding rectangle such that 45 degrees always falls on the * line from the center of the ellipse to the upper right corner of * the bounding rectangle. As a result, if the bounding rectangle is * noticeably longer in one axis than the other, the angles to the * start and end of the arc segment will be skewed farther along the * longer axis of the bounds. * @param x the <i>x</i> coordinate of the * upper-left corner of the arc to be filled. * @param y the <i>y</i> coordinate of the * upper-left corner of the arc to be filled. * @param width the width of the arc to be filled. * @param height the height of the arc to be filled. * @param startAngle the beginning angle. * @param arcAngle the angular extent of the arc, * relative to the start angle. * @see java.awt.Graphics#drawArc */ public void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle) { fill(new Arc2D.Float(x, y, width, height, startAngle, arcAngle, Arc2D.PIE)); } /** * Draws a sequence of connected lines defined by * arrays of <i>x</i> and <i>y</i> coordinates. * Each pair of (<i>x</i>, <i>y</i>) coordinates defines a point. * The figure is not closed if the first point * differs from the last point. * @param xPoints an array of <i>x</i> points * @param yPoints an array of <i>y</i> points * @param nPoints the total number of points * @see java.awt.Graphics#drawPolygon(int[], int[], int) * @since 1.1 */ public void drawPolyline(int xPoints[], int yPoints[], int nPoints) { if (nPoints == 2) { draw(new Line2D.Float(xPoints[0], yPoints[0], xPoints[1], yPoints[1])); } else if (nPoints > 2) { Path2D path = new Path2D.Float(Path2D.WIND_EVEN_ODD, nPoints); path.moveTo(xPoints[0], yPoints[0]); for(int i = 1; i < nPoints; i++) { path.lineTo(xPoints[i], yPoints[i]); } draw(path); } } /** * Draws a closed polygon defined by * arrays of <i>x</i> and <i>y</i> coordinates. * Each pair of (<i>x</i>, <i>y</i>) coordinates defines a point. * <p> * This method draws the polygon defined by {@code nPoint} line * segments, where the first <code>nPoint - 1</code> * line segments are line segments from * <code>(xPoints[i - 1], yPoints[i - 1])</code> * to <code>(xPoints[i], yPoints[i])</code>, for * 1 ≤ <i>i</i> ≤ {@code nPoints}. * The figure is automatically closed by drawing a line connecting * the final point to the first point, if those points are different. * @param xPoints a an array of {@code x} coordinates. * @param yPoints a an array of {@code y} coordinates. * @param nPoints a the total number of points. * @see java.awt.Graphics#fillPolygon * @see java.awt.Graphics#drawPolyline */ public void drawPolygon(int xPoints[], int yPoints[], int nPoints) { draw(new Polygon(xPoints, yPoints, nPoints)); } /** * Draws the outline of a polygon defined by the specified * {@code Polygon} object. * @param p the polygon to draw. * @see java.awt.Graphics#fillPolygon * @see java.awt.Graphics#drawPolyline */ public void drawPolygon(Polygon p) { draw(p); } /** * Fills a closed polygon defined by * arrays of <i>x</i> and <i>y</i> coordinates. * <p> * This method draws the polygon defined by {@code nPoint} line * segments, where the first <code>nPoint - 1</code> * line segments are line segments from * <code>(xPoints[i - 1], yPoints[i - 1])</code> * to <code>(xPoints[i], yPoints[i])</code>, for * 1 ≤ <i>i</i> ≤ {@code nPoints}. * The figure is automatically closed by drawing a line connecting * the final point to the first point, if those points are different. * <p> * The area inside the polygon is defined using an * even-odd fill rule, also known as the alternating rule. * @param xPoints a an array of {@code x} coordinates. * @param yPoints a an array of {@code y} coordinates. * @param nPoints a the total number of points. * @see java.awt.Graphics#drawPolygon(int[], int[], int) */ public void fillPolygon(int xPoints[], int yPoints[], int nPoints) { fill(new Polygon(xPoints, yPoints, nPoints)); } /** * Fills the polygon defined by the specified Polygon object with * the graphics context's current color. * <p> * The area inside the polygon is defined using an * even-odd fill rule, also known as the alternating rule. * @param p the polygon to fill. * @see java.awt.Graphics#drawPolygon(int[], int[], int) */ public void fillPolygon(Polygon p) { fill(p); } /** * Draws the text given by the specified string, using this * graphics context's current font and color. The baseline of the * first character is at position (<i>x</i>, <i>y</i>) in this * graphics context's coordinate system. * @param str the string to be drawn. * @param x the <i>x</i> coordinate. * @param y the <i>y</i> coordinate. * @see java.awt.Graphics#drawBytes * @see java.awt.Graphics#drawChars * @since 1.0 */ public void drawString(String str, int x, int y) { drawString(str, (float) x, (float) y); } public void drawString(String str, float x, float y) { if (str.length() == 0) { return; } TextLayout layout = new TextLayout(str, getFont(), getFontRenderContext()); layout.draw(this, x, y); } protected void drawString(String str, float x, float y, Font font, FontRenderContext frc, float w) { TextLayout layout = new TextLayout(str, font, frc); Shape textShape = layout.getOutline(AffineTransform.getTranslateInstance(x, y)); fill(textShape); } /** * Draws the text given by the specified iterator, using this * graphics context's current color. The iterator has to specify a font * for each character. The baseline of the * first character is at position (<i>x</i>, <i>y</i>) in this * graphics context's coordinate system. * @param iterator the iterator whose text is to be drawn * @param x the <i>x</i> coordinate. * @param y the <i>y</i> coordinate. * @see java.awt.Graphics#drawBytes * @see java.awt.Graphics#drawChars */ public void drawString(AttributedCharacterIterator iterator, int x, int y) { drawString(iterator, (float) x, (float) y); } public void drawString(AttributedCharacterIterator iterator, float x, float y) { if (iterator == null) { throw new NullPointerException("attributedcharacteriterator is null"); } TextLayout layout = new TextLayout(iterator, getFontRenderContext()); layout.draw(this, x, y); } /** * Draws a GlyphVector. * The rendering attributes applied include the clip, transform, * paint or color, and composite attributes. The GlyphVector specifies * individual glyphs from a Font. * @param g The GlyphVector to be drawn. * @param x,y The coordinates where the glyphs should be drawn. * @see #setPaint * @see java.awt.Graphics#setColor * @see #transform * @see #setTransform * @see #setComposite * @see #clip * @see #setClip */ public void drawGlyphVector(GlyphVector g, float x, float y) { /* We should not reach here if printingGlyphVector is already true. * Add an assert so this can be tested if need be. * But also ensure that we do at least render properly by filling * the outline. */ if (printingGlyphVector) { assert !printingGlyphVector; // ie false. fill(g.getOutline(x, y)); return; } try { printingGlyphVector = true; if (RasterPrinterJob.shapeTextProp || !printedSimpleGlyphVector(g, x, y)) { fill(g.getOutline(x, y)); } } finally { printingGlyphVector = false; } } protected static SoftReference<Hashtable<Font2DHandle,Object>> fontMapRef = new SoftReference<Hashtable<Font2DHandle,Object>>(null); protected int platformFontCount(Font font, String str) { return 0; } /** * Default implementation returns false. * Callers of this method must always be prepared for this, * and delegate to outlines or some other solution. */ protected boolean printGlyphVector(GlyphVector gv, float x, float y) { return false; } /* GlyphVectors are usually encountered because TextLayout is in use. * Some times TextLayout is needed to handle complex text or some * rendering attributes trigger it. * We try to print GlyphVectors by reconstituting into a String, * as that is most recoverable for applications that export to formats * such as Postscript or PDF. In some cases (eg where its not complex * text and its just that positions aren't what we'd expect) we print * one character at a time. positioning individually. * Failing that, if we can directly send glyph codes to the printer * then we do that (printGlyphVector). * As a last resort we return false and let the caller print as filled * shapes. */ boolean printedSimpleGlyphVector(GlyphVector g, float x, float y) { int flags = g.getLayoutFlags(); /* We can't handle RTL, re-ordering, complex glyphs etc by * reconstituting glyphs into a String. So if any flags besides * position adjustments are set, see if we can directly * print the GlyphVector as glyph codes, using the positions * layout has assigned. If that fails return false; */ if (flags != 0 && flags != GlyphVector.FLAG_HAS_POSITION_ADJUSTMENTS) { return printGlyphVector(g, x, y); } Font font = g.getFont(); Font2D font2D = FontUtilities.getFont2D(font); if (font2D.handle.font2D != font2D) { /* suspicious, may be a bad font. lets bail */ return false; } Hashtable<Font2DHandle,Object> fontMap; synchronized (PathGraphics.class) { fontMap = fontMapRef.get(); if (fontMap == null) { fontMap = new Hashtable<Font2DHandle,Object>(); fontMapRef = new SoftReference<Hashtable<Font2DHandle,Object>>(fontMap); } } int numGlyphs = g.getNumGlyphs(); int[] glyphCodes = g.getGlyphCodes(0, numGlyphs, null); char[] glyphToCharMap = null; char[][] mapArray = null; CompositeFont cf = null; /* Build the needed maps for this font in a synchronized block */ synchronized (fontMap) { if (font2D instanceof CompositeFont) { cf = (CompositeFont)font2D; int numSlots = cf.getNumSlots(); mapArray = (char[][])fontMap.get(font2D.handle); if (mapArray == null) { mapArray = new char[numSlots][]; fontMap.put(font2D.handle, mapArray); } for (int i=0; i<numGlyphs;i++) { int slot = glyphCodes[i] >>> 24; if (slot >= numSlots) { /* shouldn't happen */ return false; } if (mapArray[slot] == null) { Font2D slotFont = cf.getSlotFont(slot); char[] map = (char[])fontMap.get(slotFont.handle); if (map == null) { map = getGlyphToCharMapForFont(slotFont); } mapArray[slot] = map; } } } else { glyphToCharMap = (char[])fontMap.get(font2D.handle); if (glyphToCharMap == null) { glyphToCharMap = getGlyphToCharMapForFont(font2D); fontMap.put(font2D.handle, glyphToCharMap); } } } char[] chars = new char[numGlyphs]; if (cf != null) { for (int i=0; i<numGlyphs; i++) { int gc = glyphCodes[i]; char[] map = mapArray[gc >>> 24]; gc = gc & 0xffffff; if (map == null) { return false; } /* X11 symbol & dingbats fonts used only for global metrics, * so the glyph codes we have really refer to Lucida Sans * Regular. * So its possible the glyph code may appear out of range. * Note that later on we double-check the glyph codes that * we get from re-creating the GV from the string are the * same as those we started with. * * If the glyphcode is INVISIBLE_GLYPH_ID then this may * be \t, \n or \r which are mapped to that by layout. * This is a case we can handle. It doesn't matter what * character we use (we use \n) so long as layout maps it * back to this in the verification, since the invisible * glyph isn't visible :) */ char ch; if (gc == CharToGlyphMapper.INVISIBLE_GLYPH_ID) { ch = '\n'; } else if (gc < 0 || gc >= map.length) { return false; } else { ch = map[gc]; } if (ch != CharToGlyphMapper.INVISIBLE_GLYPH_ID) { chars[i] = ch; } else { return false; } } } else { for (int i=0; i<numGlyphs; i++) { int gc = glyphCodes[i]; char ch; if (gc == CharToGlyphMapper.INVISIBLE_GLYPH_ID) { ch = '\n'; } else if (gc < 0 || gc >= glyphToCharMap.length) { return false; } else { ch = glyphToCharMap[gc]; } if (ch != CharToGlyphMapper.INVISIBLE_GLYPH_ID) { chars[i] = ch; } else { return false; } } } FontRenderContext gvFrc = g.getFontRenderContext(); GlyphVector gv2 = font.createGlyphVector(gvFrc, chars); if (gv2.getNumGlyphs() != numGlyphs) { return printGlyphVector(g, x, y); } int[] glyphCodes2 = gv2.getGlyphCodes(0, numGlyphs, null); /* * Needed to double-check remapping of X11 symbol & dingbats. */ for (int i=0; i<numGlyphs; i++) { if (glyphCodes[i] != glyphCodes2[i]) { return printGlyphVector(g, x, y); } } FontRenderContext g2dFrc = getFontRenderContext(); boolean compatibleFRC = gvFrc.equals(g2dFrc); /* If differ only in specifying A-A or a translation, these are * also compatible FRC's, and we can do one drawString call. */ if (!compatibleFRC && gvFrc.usesFractionalMetrics() == g2dFrc.usesFractionalMetrics()) { AffineTransform gvAT = gvFrc.getTransform(); AffineTransform g2dAT = getTransform(); double[] gvMatrix = new double[4]; double[] g2dMatrix = new double[4]; gvAT.getMatrix(gvMatrix); g2dAT.getMatrix(g2dMatrix); compatibleFRC = true; for (int i=0;i<4;i++) { if (gvMatrix[i] != g2dMatrix[i]) { compatibleFRC = false; break; } } } String str = new String(chars, 0, numGlyphs); int numFonts = platformFontCount(font, str); if (numFonts == 0) { return false; } float[] positions = g.getGlyphPositions(0, numGlyphs, null); boolean noPositionAdjustments = ((flags & GlyphVector.FLAG_HAS_POSITION_ADJUSTMENTS) == 0) || samePositions(gv2, glyphCodes2, glyphCodes, positions); /* We have to consider that the application may be directly * creating a GlyphVector, rather than one being created by * TextLayout or indirectly from drawString. In such a case, if the * font has layout attributes, the text may measure differently * when we reconstitute it into a String and ask for the length that * drawString would use. For example, KERNING will be applied in such * a case but that Font attribute is not applied when the application * directly created a GlyphVector. So in this case we need to verify * that the text measures the same in both cases - ie that the * layout attribute has no effect. If it does we can't always * use the drawString call unless we can coerce the drawString call * into measuring and displaying the string to the same length. * That is the case where there is only one font used and we can * specify the overall advance of the string. (See below). */ Point2D gvAdvancePt = g.getGlyphPosition(numGlyphs); float gvAdvanceX = (float)gvAdvancePt.getX(); boolean layoutAffectsAdvance = false; if (font.hasLayoutAttributes() && printingGlyphVector && noPositionAdjustments) { /* If TRACKING is in use then the glyph vector will report * position adjustments, then that ought to be sufficient to * tell us we can't just ask native to do "drawString". But layout * always sets the position adjustment flag, so we don't believe * it and verify the positions are really different than * createGlyphVector() (with no layout) would create. However * inconsistently, TRACKING is applied when creating a GlyphVector, * since it doesn't actually require "layout" (even though its * considered a layout attribute), it just requires a fractional * tweak to the[default]advances. So we need to specifically * check for tracking until such time as we can trust * the GlyphVector.FLAG_HAS_POSITION_ADJUSTMENTS bit. */ Map<TextAttribute, ?> map = font.getAttributes(); Object o = map.get(TextAttribute.TRACKING); boolean tracking = o != null && (o instanceof Number) && (((Number)o).floatValue() != 0f); if (tracking) { noPositionAdjustments = false; } else { Rectangle2D bounds = font.getStringBounds(str, gvFrc); float strAdvanceX = (float)bounds.getWidth(); if (Math.abs(strAdvanceX - gvAdvanceX) > 0.00001) { layoutAffectsAdvance = true; } } } if (compatibleFRC && noPositionAdjustments && !layoutAffectsAdvance) { drawString(str, x, y, font, gvFrc, 0f); return true; } /* If positions have not been explicitly assigned, we can * ask the string to be drawn adjusted to this width. * This call is supported only in the PS generator. * GDI has API to specify the advance for each glyph in a * string which could be used here too, but that is not yet * implemented, and we'd need to update the signature of the * drawString method to take the advances (ie relative positions) * and use that instead of the width. */ if (numFonts == 1 && canDrawStringToWidth() && noPositionAdjustments) { drawString(str, x, y, font, gvFrc, gvAdvanceX); return true; } /* In some scripts chars drawn individually do not have the * same representation (glyphs) as when combined with other chars. * The logic here is erring on the side of caution, in particular * in including supplementary characters. */ if (FontUtilities.isComplexText(chars, 0, chars.length)) { return printGlyphVector(g, x, y); } /* If we reach here we have mapped all the glyphs back * one-to-one to simple unicode chars that we know are in the font. * We can call "drawChars" on each one of them in turn, setting * the position based on the glyph positions. * There's typically overhead in this. If numGlyphs is 'large', * it may even be better to try printGlyphVector() in this case. * This may be less recoverable for apps, but sophisticated apps * should be able to recover the text from simple glyph vectors * and we can avoid penalising the more common case - although * this is already a minority case. */ if (numGlyphs > 10 && printGlyphVector(g, x, y)) { return true; } for (int i=0; i<numGlyphs; i++) { String s = new String(chars, i, 1); drawString(s, x+positions[i*2], y+positions[i*2+1], font, gvFrc, 0f); } return true; } /* The same codes must be in the same positions for this to return true. * This would look cleaner if it took the original GV as a parameter but * we already have the codes and will need to get the positions array * too in most cases anyway. So its cheaper to pass them in. * This call wouldn't be necessary if layout didn't always set the * FLAG_HAS_POSITION_ADJUSTMENTS even if the default advances are used * and there was no re-ordering (this should be fixed some day). */ private boolean samePositions(GlyphVector gv, int[] gvcodes, int[] origCodes, float[] origPositions) { int numGlyphs = gv.getNumGlyphs(); float[] gvpos = gv.getGlyphPositions(0, numGlyphs, null); /* this shouldn't happen here, but just in case */ if (numGlyphs != gvcodes.length || /* real paranoia here */ origCodes.length != gvcodes.length || origPositions.length != gvpos.length) { return false; } for (int i=0; i<numGlyphs; i++) { if (gvcodes[i] != origCodes[i] || gvpos[i] != origPositions[i]) { return false; } } return true; } protected boolean canDrawStringToWidth() { return false; } /* return an array which can map glyphs back to char codes. * Glyphs which aren't mapped from a simple unicode code point * will have no mapping in this array, and will be assumed to be * because of some substitution that we can't handle. */ private static char[] getGlyphToCharMapForFont(Font2D font2D) { /* NB Composites report the number of glyphs in slot 0. * So if a string uses a char from a later slot, or a fallback slot, * it will not be able to use this faster path. */ int numGlyphs = font2D.getNumGlyphs(); int missingGlyph = font2D.getMissingGlyphCode(); char[] glyphToCharMap = new char[numGlyphs]; int glyph; for (int i=0;i<numGlyphs; i++) { glyphToCharMap[i] = CharToGlyphMapper.INVISIBLE_GLYPH_ID; } /* Consider refining the ranges to try to map by asking the font * what ranges it supports. * Since a glyph may be mapped by multiple code points, and this * code can't handle that, we always prefer the earlier code point. */ for (char c=0; c<0xFFFF; c++) { if (c >= CharToGlyphMapper.HI_SURROGATE_START && c <= CharToGlyphMapper.LO_SURROGATE_END) { continue; } glyph = font2D.charToGlyph(c); if (glyph != missingGlyph && glyph >= 0 && glyph < numGlyphs && (glyphToCharMap[glyph] == CharToGlyphMapper.INVISIBLE_GLYPH_ID)) { glyphToCharMap[glyph] = c; } } return glyphToCharMap; } /** * Strokes the outline of a Shape using the settings of the current * graphics state. The rendering attributes applied include the * clip, transform, paint or color, composite and stroke attributes. * @param s The shape to be drawn. * @see #setStroke * @see #setPaint * @see java.awt.Graphics#setColor * @see #transform * @see #setTransform * @see #clip * @see #setClip * @see #setComposite */ public void draw(Shape s) { fill(getStroke().createStrokedShape(s)); } /** * Fills the interior of a Shape using the settings of the current * graphics state. The rendering attributes applied include the * clip, transform, paint or color, and composite. * @see #setPaint * @see java.awt.Graphics#setColor * @see #transform * @see #setTransform * @see #setComposite * @see #clip * @see #setClip */ public void fill(Shape s) { Paint paint = getPaint(); try { fill(s, (Color) paint); /* The PathGraphics class only supports filling with * solid colors and so we do not expect the cast of Paint * to Color to fail. If it does fail then something went * wrong, like the app draw a page with a solid color but * then redrew it with a Gradient. */ } catch (ClassCastException e) { throw new IllegalArgumentException("Expected a Color instance"); } } public void fill(Shape s, Color color) { AffineTransform deviceTransform = getTransform(); if (getClip() != null) { deviceClip(getClip().getPathIterator(deviceTransform)); } deviceFill(s.getPathIterator(deviceTransform), color); } /** * Fill the path defined by {@code pathIter} * with the specified color. * The path is provided in device coordinates. */ protected abstract void deviceFill(PathIterator pathIter, Color color); /* * Set the clipping path to that defined by * the passed in {@code PathIterator}. */ protected abstract void deviceClip(PathIterator pathIter); /* * Draw the outline of the rectangle without using path * if supported by platform. */ protected abstract void deviceFrameRect(int x, int y, int width, int height, Color color); /* * Draw a line without using path if supported by platform. */ protected abstract void deviceDrawLine(int xBegin, int yBegin, int xEnd, int yEnd, Color color); /* * Fill a rectangle using specified color. */ protected abstract void deviceFillRect(int x, int y, int width, int height, Color color); /* Obtain a BI from known implementations of java.awt.Image */ protected BufferedImage getBufferedImage(Image img) { if (img instanceof BufferedImage) { // Otherwise we expect a BufferedImage to behave as a standard BI return (BufferedImage)img; } else if (img instanceof ToolkitImage) { // This can be null if the image isn't loaded yet. // This is fine as in that case our caller will return // as it will only draw a fully loaded image return ((ToolkitImage)img).getBufferedImage(); } else if (img instanceof VolatileImage) { // VI needs to make a new BI: this is unavoidable but // I don't expect VI's to be "huge" in any case. return ((VolatileImage)img).getSnapshot(); } else { // may be null or may be some non-standard Image which // shouldn't happen as Image is implemented by the platform // not by applications // If you add a new Image implementation to the platform you // will need to support it here similarly to VI. return null; } } /** * Return true if the BufferedImage argument has non-opaque * bits in it and therefore can not be directly rendered by * GDI. Return false if the image is opaque. If this function * can not tell for sure whether the image has transparent * pixels then it assumes that it does. */ protected boolean hasTransparentPixels(BufferedImage bufferedImage) { ColorModel colorModel = bufferedImage.getColorModel(); boolean hasTransparency = colorModel == null ? true : colorModel.getTransparency() != ColorModel.OPAQUE; /* * For the default INT ARGB check the image to see if any pixels are * really transparent. If there are no transparent pixels then the * transparency of the color model can be ignored. * We assume that IndexColorModel images have already been * checked for transparency and will be OPAQUE unless they actually * have transparent pixels present. */ if (hasTransparency && bufferedImage != null) { if (bufferedImage.getType()==BufferedImage.TYPE_INT_ARGB || bufferedImage.getType()==BufferedImage.TYPE_INT_ARGB_PRE) { DataBuffer db = bufferedImage.getRaster().getDataBuffer(); SampleModel sm = bufferedImage.getRaster().getSampleModel(); if (db instanceof DataBufferInt && sm instanceof SinglePixelPackedSampleModel) { SinglePixelPackedSampleModel psm = (SinglePixelPackedSampleModel)sm; // Stealing the data array for reading only... int[] int_data = SunWritableRaster.stealData((DataBufferInt) db, 0); int x = bufferedImage.getMinX(); int y = bufferedImage.getMinY(); int w = bufferedImage.getWidth(); int h = bufferedImage.getHeight(); int stride = psm.getScanlineStride(); boolean hastranspixel = false; for (int j = y; j < y+h; j++) { int yoff = j * stride; for (int i = x; i < x+w; i++) { if ((int_data[yoff+i] & 0xff000000)!=0xff000000 ) { hastranspixel = true; break; } } if (hastranspixel) { break; } } if (hastranspixel == false) { hasTransparency = false; } } } } return hasTransparency; } protected boolean isBitmaskTransparency(BufferedImage bufferedImage) { ColorModel colorModel = bufferedImage.getColorModel(); return (colorModel != null && colorModel.getTransparency() == ColorModel.BITMASK); } /* An optimisation for the special case of ICM images which have * bitmask transparency. */ protected boolean drawBitmaskImage(BufferedImage bufferedImage, AffineTransform xform, Color bgcolor, int srcX, int srcY, int srcWidth, int srcHeight) { ColorModel colorModel = bufferedImage.getColorModel(); IndexColorModel icm; int [] pixels; if (!(colorModel instanceof IndexColorModel)) { return false; } else { icm = (IndexColorModel)colorModel; } if (colorModel.getTransparency() != ColorModel.BITMASK) { return false; } // to be compatible with 1.1 printing which treated b/g colors // with alpha 128 as opaque if (bgcolor != null && bgcolor.getAlpha() < 128) { return false; } if ((xform.getType() & ~( AffineTransform.TYPE_UNIFORM_SCALE | AffineTransform.TYPE_TRANSLATION | AffineTransform.TYPE_QUADRANT_ROTATION )) != 0) { return false; } if ((getTransform().getType() & ~( AffineTransform.TYPE_UNIFORM_SCALE | AffineTransform.TYPE_TRANSLATION | AffineTransform.TYPE_QUADRANT_ROTATION )) != 0) { return false; } BufferedImage subImage = null; Raster raster = bufferedImage.getRaster(); int transpixel = icm.getTransparentPixel(); byte[] alphas = new byte[icm.getMapSize()]; icm.getAlphas(alphas); if (transpixel >= 0) { alphas[transpixel] = 0; } /* don't just use srcWidth & srcHeight from application - they * may exceed the extent of the image - may need to clip. * The image xform will ensure that points are still mapped properly. */ int rw = raster.getWidth(); int rh = raster.getHeight(); if (srcX > rw || srcY > rh) { return false; } int right, bottom, wid, hgt; if (srcX+srcWidth > rw) { right = rw; wid = right - srcX; } else { right = srcX+srcWidth; wid = srcWidth; } if (srcY+srcHeight > rh) { bottom = rh; hgt = bottom - srcY; } else { bottom = srcY+srcHeight; hgt = srcHeight; } pixels = new int[wid]; for (int j=srcY; j<bottom; j++) { int startx = -1; raster.getPixels(srcX, j, wid, 1, pixels); for (int i=srcX; i<right; i++) { if (alphas[pixels[i-srcX]] == 0) { if (startx >=0) { subImage = bufferedImage.getSubimage(startx, j, i-startx, 1); xform.translate(startx, j); drawImageToPlatform(subImage, xform, bgcolor, 0, 0, i-startx, 1, true); xform.translate(-startx, -j); startx = -1; } } else if (startx < 0) { startx = i; } } if (startx >= 0) { subImage = bufferedImage.getSubimage(startx, j, right - startx, 1); xform.translate(startx, j); drawImageToPlatform(subImage, xform, bgcolor, 0, 0, right - startx, 1, true); xform.translate(-startx, -j); } } return true; } /** * The various {@code drawImage()} methods for * {@code PathGraphics} are all decomposed * into an invocation of {@code drawImageToPlatform}. * The portion of the passed in image defined by * {@code srcX, srcY, srcWidth, and srcHeight} * is transformed by the supplied AffineTransform and * drawn using PS to the printer context. * * @param img The image to be drawn. * This method does nothing if {@code img} is null. * @param xform Used to transform the image before drawing. * This can be null. * @param bgcolor This color is drawn where the image has transparent * pixels. If this parameter is null then the * pixels already in the destination should show * through. * @param srcX With srcY this defines the upper-left corner * of the portion of the image to be drawn. * * @param srcY With srcX this defines the upper-left corner * of the portion of the image to be drawn. * @param srcWidth The width of the portion of the image to * be drawn. * @param srcHeight The height of the portion of the image to * be drawn. * @param handlingTransparency if being recursively called to * print opaque region of transparent image */ protected abstract boolean drawImageToPlatform(Image img, AffineTransform xform, Color bgcolor, int srcX, int srcY, int srcWidth, int srcHeight, boolean handlingTransparency); /** * Draws as much of the specified image as is currently available. * The image is drawn with its top-left corner at * (<i>x</i>, <i>y</i>) in this graphics context's coordinate * space. Transparent pixels in the image do not affect whatever * pixels are already there. * <p> * This method returns immediately in all cases, even if the * complete image has not yet been loaded, and it has not been dithered * and converted for the current output device. * <p> * If the image has not yet been completely loaded, then * {@code drawImage} returns {@code false}. As more of * the image becomes available, the process that draws the image notifies * the specified image observer. * @param img the specified image to be drawn. * @param x the <i>x</i> coordinate. * @param y the <i>y</i> coordinate. * @param observer object to be notified as more of * the image is converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int) * @since 1.0 */ public boolean drawImage(Image img, int x, int y, ImageObserver observer) { return drawImage(img, x, y, null, observer); } /** * Draws as much of the specified image as has already been scaled * to fit inside the specified rectangle. * <p> * The image is drawn inside the specified rectangle of this * graphics context's coordinate space, and is scaled if * necessary. Transparent pixels do not affect whatever pixels * are already there. * <p> * This method returns immediately in all cases, even if the * entire image has not yet been scaled, dithered, and converted * for the current output device. * If the current output representation is not yet complete, then * {@code drawImage} returns {@code false}. As more of * the image becomes available, the process that draws the image notifies * the image observer by calling its {@code imageUpdate} method. * <p> * A scaled version of an image will not necessarily be * available immediately just because an unscaled version of the * image has been constructed for this output device. Each size of * the image may be cached separately and generated from the original * data in a separate image production sequence. * @param img the specified image to be drawn. * @param x the <i>x</i> coordinate. * @param y the <i>y</i> coordinate. * @param width the width of the rectangle. * @param height the height of the rectangle. * @param observer object to be notified as more of * the image is converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int) * @since 1.0 */ public boolean drawImage(Image img, int x, int y, int width, int height, ImageObserver observer) { return drawImage(img, x, y, width, height, null, observer); } /* * Draws as much of the specified image as is currently available. * The image is drawn with its top-left corner at * (<i>x</i>, <i>y</i>) in this graphics context's coordinate * space. Transparent pixels are drawn in the specified * background color. * <p> * This operation is equivalent to filling a rectangle of the * width and height of the specified image with the given color and then * drawing the image on top of it, but possibly more efficient. * <p> * This method returns immediately in all cases, even if the * complete image has not yet been loaded, and it has not been dithered * and converted for the current output device. * <p> * If the image has not yet been completely loaded, then * {@code drawImage} returns {@code false}. As more of * the image becomes available, the process that draws the image notifies * the specified image observer. * @param img the specified image to be drawn. * This method does nothing if {@code img} is null. * @param x the <i>x</i> coordinate. * @param y the <i>y</i> coordinate. * @param bgcolor the background color to paint under the * non-opaque portions of the image. * In this WPathGraphics implementation, * this parameter can be null in which * case that background is made a transparent * white. * @param observer object to be notified as more of * the image is converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int) * @since 1.0 */ public boolean drawImage(Image img, int x, int y, Color bgcolor, ImageObserver observer) { if (img == null) { return true; } boolean result; int srcWidth = img.getWidth(null); int srcHeight = img.getHeight(null); if (srcWidth < 0 || srcHeight < 0) { result = false; } else { result = drawImage(img, x, y, srcWidth, srcHeight, bgcolor, observer); } return result; } /** * Draws as much of the specified image as has already been scaled * to fit inside the specified rectangle. * <p> * The image is drawn inside the specified rectangle of this * graphics context's coordinate space, and is scaled if * necessary. Transparent pixels are drawn in the specified * background color. * This operation is equivalent to filling a rectangle of the * width and height of the specified image with the given color and then * drawing the image on top of it, but possibly more efficient. * <p> * This method returns immediately in all cases, even if the * entire image has not yet been scaled, dithered, and converted * for the current output device. * If the current output representation is not yet complete then * {@code drawImage} returns {@code false}. As more of * the image becomes available, the process that draws the image notifies * the specified image observer. * <p> * A scaled version of an image will not necessarily be * available immediately just because an unscaled version of the * image has been constructed for this output device. Each size of * the image may be cached separately and generated from the original * data in a separate image production sequence. * @param img the specified image to be drawn. * This method does nothing if {@code img} is null. * @param x the <i>x</i> coordinate. * @param y the <i>y</i> coordinate. * @param width the width of the rectangle. * @param height the height of the rectangle. * @param bgcolor the background color to paint under the * non-opaque portions of the image. * @param observer object to be notified as more of * the image is converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int) * @since 1.0 */ public boolean drawImage(Image img, int x, int y, int width, int height, Color bgcolor, ImageObserver observer) { if (img == null) { return true; } boolean result; int srcWidth = img.getWidth(null); int srcHeight = img.getHeight(null); if (srcWidth < 0 || srcHeight < 0) { result = false; } else { result = drawImage(img, x, y, x + width, y + height, 0, 0, srcWidth, srcHeight, observer); } return result; } /** * Draws as much of the specified area of the specified image as is * currently available, scaling it on the fly to fit inside the * specified area of the destination drawable surface. Transparent pixels * do not affect whatever pixels are already there. * <p> * This method returns immediately in all cases, even if the * image area to be drawn has not yet been scaled, dithered, and converted * for the current output device. * If the current output representation is not yet complete then * {@code drawImage} returns {@code false}. As more of * the image becomes available, the process that draws the image notifies * the specified image observer. * <p> * This method always uses the unscaled version of the image * to render the scaled rectangle and performs the required * scaling on the fly. It does not use a cached, scaled version * of the image for this operation. Scaling of the image from source * to destination is performed such that the first coordinate * of the source rectangle is mapped to the first coordinate of * the destination rectangle, and the second source coordinate is * mapped to the second destination coordinate. The subimage is * scaled and flipped as needed to preserve those mappings. * @param img the specified image to be drawn * @param dx1 the <i>x</i> coordinate of the first corner of the * destination rectangle. * @param dy1 the <i>y</i> coordinate of the first corner of the * destination rectangle. * @param dx2 the <i>x</i> coordinate of the second corner of the * destination rectangle. * @param dy2 the <i>y</i> coordinate of the second corner of the * destination rectangle. * @param sx1 the <i>x</i> coordinate of the first corner of the * source rectangle. * @param sy1 the <i>y</i> coordinate of the first corner of the * source rectangle. * @param sx2 the <i>x</i> coordinate of the second corner of the * source rectangle. * @param sy2 the <i>y</i> coordinate of the second corner of the * source rectangle. * @param observer object to be notified as more of the image is * scaled and converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int) * @since 1.1 */ public boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1, int sy1, int sx2, int sy2, ImageObserver observer) { return drawImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, null, observer); } /** * Draws as much of the specified area of the specified image as is * currently available, scaling it on the fly to fit inside the * specified area of the destination drawable surface. * <p> * Transparent pixels are drawn in the specified background color. * This operation is equivalent to filling a rectangle of the * width and height of the specified image with the given color and then * drawing the image on top of it, but possibly more efficient. * <p> * This method returns immediately in all cases, even if the * image area to be drawn has not yet been scaled, dithered, and converted * for the current output device. * If the current output representation is not yet complete then * {@code drawImage} returns {@code false}. As more of * the image becomes available, the process that draws the image notifies * the specified image observer. * <p> * This method always uses the unscaled version of the image * to render the scaled rectangle and performs the required * scaling on the fly. It does not use a cached, scaled version * of the image for this operation. Scaling of the image from source * to destination is performed such that the first coordinate * of the source rectangle is mapped to the first coordinate of * the destination rectangle, and the second source coordinate is * mapped to the second destination coordinate. The subimage is * scaled and flipped as needed to preserve those mappings. * @param img the specified image to be drawn * This method does nothing if {@code img} is null. * @param dx1 the <i>x</i> coordinate of the first corner of the * destination rectangle. * @param dy1 the <i>y</i> coordinate of the first corner of the * destination rectangle. * @param dx2 the <i>x</i> coordinate of the second corner of the * destination rectangle. * @param dy2 the <i>y</i> coordinate of the second corner of the * destination rectangle. * @param sx1 the <i>x</i> coordinate of the first corner of the * source rectangle. * @param sy1 the <i>y</i> coordinate of the first corner of the * source rectangle. * @param sx2 the <i>x</i> coordinate of the second corner of the * source rectangle. * @param sy2 the <i>y</i> coordinate of the second corner of the * source rectangle. * @param bgcolor the background color to paint under the * non-opaque portions of the image. * @param observer object to be notified as more of the image is * scaled and converted. * @see java.awt.Image * @see java.awt.image.ImageObserver * @see java.awt.image.ImageObserver#imageUpdate(java.awt.Image, int, int, int, int, int) * @since 1.1 */ public boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1, int sy1, int sx2, int sy2, Color bgcolor, ImageObserver observer) { if (img == null) { return true; } int imgWidth = img.getWidth(null); int imgHeight = img.getHeight(null); if (imgWidth < 0 || imgHeight < 0) { return true; } int srcWidth = sx2 - sx1; int srcHeight = sy2 - sy1; /* Create a transform which describes the changes * from the source coordinates to the destination * coordinates. The scaling is determined by the * ratio of the two rectangles, while the translation * comes from the difference of their origins. */ float scalex = (float) (dx2 - dx1) / srcWidth; float scaley = (float) (dy2 - dy1) / srcHeight; AffineTransform xForm = new AffineTransform(scalex, 0, 0, scaley, dx1 - (sx1 * scalex), dy1 - (sy1 * scaley)); /* drawImageToPlatform needs the top-left of the source area and * a positive width and height. The xform describes how to map * src->dest, so that information is not lost. */ int tmp=0; if (sx2 < sx1) { tmp = sx1; sx1 = sx2; sx2 = tmp; } if (sy2 < sy1) { tmp = sy1; sy1 = sy2; sy2 = tmp; } /* if src area is beyond the bounds of the image, we must clip it. * The transform is based on the specified area, not the clipped one. */ if (sx1 < 0) { sx1 = 0; } else if (sx1 > imgWidth) { // empty srcArea, nothing to draw sx1 = imgWidth; } if (sx2 < 0) { // empty srcArea, nothing to draw sx2 = 0; } else if (sx2 > imgWidth) { sx2 = imgWidth; } if (sy1 < 0) { sy1 = 0; } else if (sy1 > imgHeight) { // empty srcArea sy1 = imgHeight; } if (sy2 < 0) { // empty srcArea sy2 = 0; } else if (sy2 > imgHeight) { sy2 = imgHeight; } srcWidth = sx2 - sx1; srcHeight = sy2 - sy1; if (srcWidth <= 0 || srcHeight <= 0) { return true; } return drawImageToPlatform(img, xForm, bgcolor, sx1, sy1, srcWidth, srcHeight, false); } /** * Draws an image, applying a transform from image space into user space * before drawing. * The transformation from user space into device space is done with * the current transform in the Graphics2D. * The given transformation is applied to the image before the * transform attribute in the Graphics2D state is applied. * The rendering attributes applied include the clip, transform, * and composite attributes. Note that the result is * undefined, if the given transform is noninvertible. * @param img The image to be drawn. * This method does nothing if {@code img} is null. * @param xform The transformation from image space into user space. * @param obs The image observer to be notified as more of the image * is converted. * @see #transform * @see #setTransform * @see #setComposite * @see #clip * @see #setClip */ public boolean drawImage(Image img, AffineTransform xform, ImageObserver obs) { if (img == null) { return true; } boolean result; int srcWidth = img.getWidth(null); int srcHeight = img.getHeight(null); if (srcWidth < 0 || srcHeight < 0) { result = false; } else { result = drawImageToPlatform(img, xform, null, 0, 0, srcWidth, srcHeight, false); } return result; } /** * Draws a BufferedImage that is filtered with a BufferedImageOp. * The rendering attributes applied include the clip, transform * and composite attributes. This is equivalent to: * <pre> * img1 = op.filter(img, null); * drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null); * </pre> * @param op The filter to be applied to the image before drawing. * @param img The BufferedImage to be drawn. * This method does nothing if {@code img} is null. * @param x,y The location in user space where the image should be drawn. * @see #transform * @see #setTransform * @see #setComposite * @see #clip * @see #setClip */ public void drawImage(BufferedImage img, BufferedImageOp op, int x, int y) { if (img == null) { return; } int srcWidth = img.getWidth(null); int srcHeight = img.getHeight(null); if (op != null) { img = op.filter(img, null); } if (srcWidth <= 0 || srcHeight <= 0) { return; } else { AffineTransform xform = new AffineTransform(1f,0f,0f,1f,x,y); drawImageToPlatform(img, xform, null, 0, 0, srcWidth, srcHeight, false); } } /** * Draws an image, applying a transform from image space into user space * before drawing. * The transformation from user space into device space is done with * the current transform in the Graphics2D. * The given transformation is applied to the image before the * transform attribute in the Graphics2D state is applied. * The rendering attributes applied include the clip, transform, * and composite attributes. Note that the result is * undefined, if the given transform is noninvertible. * @param img The image to be drawn. * This method does nothing if {@code img} is null. * @param xform The transformation from image space into user space. * @see #transform * @see #setTransform * @see #setComposite * @see #clip * @see #setClip */ public void drawRenderedImage(RenderedImage img, AffineTransform xform) { if (img == null) { return; } BufferedImage bufferedImage = null; int srcWidth = img.getWidth(); int srcHeight = img.getHeight(); if (srcWidth <= 0 || srcHeight <= 0) { return; } if (img instanceof BufferedImage) { bufferedImage = (BufferedImage) img; } else { bufferedImage = new BufferedImage(srcWidth, srcHeight, BufferedImage.TYPE_INT_ARGB); Graphics2D imageGraphics = bufferedImage.createGraphics(); imageGraphics.drawRenderedImage(img, xform); } drawImageToPlatform(bufferedImage, xform, null, 0, 0, srcWidth, srcHeight, false); } }