/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util.stream; import java.nio.charset.Charset; import java.nio.file.Files; import java.nio.file.Path; import java.util.Collection; import java.util.Iterator; import java.util.Spliterator; import java.util.concurrent.ConcurrentHashMap; import java.util.function.IntConsumer; import java.util.function.Predicate; /** * Base interface for streams, which are sequences of elements supporting * sequential and parallel aggregate operations. The following example * illustrates an aggregate operation using the stream types {@link Stream} * and {@link IntStream}, computing the sum of the weights of the red widgets: * * <pre>{@code * int sum = widgets.stream() * .filter(w -> w.getColor() == RED) * .mapToInt(w -> w.getWeight()) * .sum(); * }</pre> * * See the class documentation for {@link Stream} and the package documentation * for <a href="package-summary.html">java.util.stream</a> for additional * specification of streams, stream operations, stream pipelines, and * parallelism, which governs the behavior of all stream types. * * @param <T> the type of the stream elements * @param <S> the type of the stream implementing {@code BaseStream} * @since 1.8 * @see Stream * @see IntStream * @see LongStream * @see DoubleStream * @see <a href="package-summary.html">java.util.stream</a> */ public interface BaseStream<T, S extends BaseStream<T, S>> extends AutoCloseable { /** * Returns an iterator for the elements of this stream. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * @return the element iterator for this stream */ Iterator<T> iterator(); /** * Returns a spliterator for the elements of this stream. * * <p>This is a <a href="package-summary.html#StreamOps">terminal * operation</a>. * * <p> * The returned spliterator should report the set of characteristics derived * from the stream pipeline (namely the characteristics derived from the * stream source spliterator and the intermediate operations). * Implementations may report a sub-set of those characteristics. For * example, it may be too expensive to compute the entire set for some or * all possible stream pipelines. * * @return the element spliterator for this stream */ Spliterator<T> spliterator(); /** * Returns whether this stream, if a terminal operation were to be executed, * would execute in parallel. Calling this method after invoking an * terminal stream operation method may yield unpredictable results. * * @return {@code true} if this stream would execute in parallel if executed */ boolean isParallel(); /** * Returns an equivalent stream that is sequential. May return * itself, either because the stream was already sequential, or because * the underlying stream state was modified to be sequential. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @return a sequential stream */ S sequential(); /** * Returns an equivalent stream that is parallel. May return * itself, either because the stream was already parallel, or because * the underlying stream state was modified to be parallel. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @return a parallel stream */ S parallel(); /** * Returns an equivalent stream that is * <a href="package-summary.html#Ordering">unordered</a>. May return * itself, either because the stream was already unordered, or because * the underlying stream state was modified to be unordered. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @return an unordered stream */ S unordered(); /** * Returns an equivalent stream with an additional close handler. Close * handlers are run when the {@link #close()} method * is called on the stream, and are executed in the order they were * added. All close handlers are run, even if earlier close handlers throw * exceptions. If any close handler throws an exception, the first * exception thrown will be relayed to the caller of {@code close()}, with * any remaining exceptions added to that exception as suppressed exceptions * (unless one of the remaining exceptions is the same exception as the * first exception, since an exception cannot suppress itself.) May * return itself. * * <p>This is an <a href="package-summary.html#StreamOps">intermediate * operation</a>. * * @param closeHandler A task to execute when the stream is closed * @return a stream with a handler that is run if the stream is closed */ S onClose(Runnable closeHandler); /** * Closes this stream, causing all close handlers for this stream pipeline * to be called. * * @see AutoCloseable#close() */ @Override void close(); }