/* * Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.tools.javac.code; import javax.lang.model.element.Element; import javax.lang.model.element.ElementKind; import javax.lang.model.type.TypeKind; import javax.tools.JavaFileObject; import com.sun.tools.javac.code.Attribute.Array; import com.sun.tools.javac.code.Attribute.TypeCompound; import com.sun.tools.javac.code.Symbol.ClassSymbol; import com.sun.tools.javac.code.Symbol.TypeSymbol; import com.sun.tools.javac.code.Type.ArrayType; import com.sun.tools.javac.code.Type.CapturedType; import com.sun.tools.javac.code.Type.ClassType; import com.sun.tools.javac.code.Type.ErrorType; import com.sun.tools.javac.code.Type.ForAll; import com.sun.tools.javac.code.Type.MethodType; import com.sun.tools.javac.code.Type.PackageType; import com.sun.tools.javac.code.Type.TypeVar; import com.sun.tools.javac.code.Type.UndetVar; import com.sun.tools.javac.code.Type.Visitor; import com.sun.tools.javac.code.Type.WildcardType; import com.sun.tools.javac.code.TypeAnnotationPosition.TypePathEntry; import com.sun.tools.javac.code.TypeAnnotationPosition.TypePathEntryKind; import com.sun.tools.javac.code.Symbol.VarSymbol; import com.sun.tools.javac.code.Symbol.MethodSymbol; import com.sun.tools.javac.code.Type.ModuleType; import com.sun.tools.javac.code.TypeMetadata.Entry.Kind; import com.sun.tools.javac.comp.Annotate; import com.sun.tools.javac.comp.Attr; import com.sun.tools.javac.comp.AttrContext; import com.sun.tools.javac.comp.Env; import com.sun.tools.javac.tree.JCTree; import com.sun.tools.javac.tree.TreeInfo; import com.sun.tools.javac.tree.JCTree.JCBlock; import com.sun.tools.javac.tree.JCTree.JCClassDecl; import com.sun.tools.javac.tree.JCTree.JCExpression; import com.sun.tools.javac.tree.JCTree.JCLambda; import com.sun.tools.javac.tree.JCTree.JCMethodDecl; import com.sun.tools.javac.tree.JCTree.JCMethodInvocation; import com.sun.tools.javac.tree.JCTree.JCNewClass; import com.sun.tools.javac.tree.JCTree.JCTypeApply; import com.sun.tools.javac.tree.JCTree.JCVariableDecl; import com.sun.tools.javac.tree.TreeScanner; import com.sun.tools.javac.tree.JCTree.*; import com.sun.tools.javac.util.Assert; import com.sun.tools.javac.util.Context; import com.sun.tools.javac.util.List; import com.sun.tools.javac.util.ListBuffer; import com.sun.tools.javac.util.Log; import com.sun.tools.javac.util.Names; import static com.sun.tools.javac.code.Kinds.Kind.*; /** * Contains operations specific to processing type annotations. * This class has two functions: * separate declaration from type annotations and insert the type * annotations to their types; * and determine the TypeAnnotationPositions for all type annotations. */ public class TypeAnnotations { protected static final Context.Key<TypeAnnotations> typeAnnosKey = new Context.Key<>(); public static TypeAnnotations instance(Context context) { TypeAnnotations instance = context.get(typeAnnosKey); if (instance == null) instance = new TypeAnnotations(context); return instance; } final Log log; final Names names; final Symtab syms; final Annotate annotate; final Attr attr; protected TypeAnnotations(Context context) { context.put(typeAnnosKey, this); names = Names.instance(context); log = Log.instance(context); syms = Symtab.instance(context); annotate = Annotate.instance(context); attr = Attr.instance(context); } /** * Separate type annotations from declaration annotations and * determine the correct positions for type annotations. * This version only visits types in signatures and should be * called from MemberEnter. */ public void organizeTypeAnnotationsSignatures(final Env<AttrContext> env, final JCClassDecl tree) { annotate.afterTypes(() -> { JavaFileObject oldSource = log.useSource(env.toplevel.sourcefile); try { new TypeAnnotationPositions(true).scan(tree); } finally { log.useSource(oldSource); } }); } public void validateTypeAnnotationsSignatures(final Env<AttrContext> env, final JCClassDecl tree) { annotate.validate(() -> { //validate annotations JavaFileObject oldSource = log.useSource(env.toplevel.sourcefile); try { attr.validateTypeAnnotations(tree, true); } finally { log.useSource(oldSource); } }); } /** * This version only visits types in bodies, that is, field initializers, * top-level blocks, and method bodies, and should be called from Attr. */ public void organizeTypeAnnotationsBodies(JCClassDecl tree) { new TypeAnnotationPositions(false).scan(tree); } public enum AnnotationType { DECLARATION, TYPE, NONE, BOTH } public List<Attribute> annotationTargets(TypeSymbol tsym) { Attribute.Compound atTarget = tsym.getAnnotationTypeMetadata().getTarget(); if (atTarget == null) { return null; } Attribute atValue = atTarget.member(names.value); if (!(atValue instanceof Attribute.Array)) { return null; } List<Attribute> targets = ((Array)atValue).getValue(); if (targets.stream().anyMatch(a -> !(a instanceof Attribute.Enum))) { return null; } return targets; } /** * Determine whether an annotation is a declaration annotation, * a type annotation, or both. */ public AnnotationType annotationTargetType(Attribute.Compound a, Symbol s) { List<Attribute> targets = annotationTargets(a.type.tsym); return (targets == null) ? AnnotationType.DECLARATION : targets.stream() .map(attr -> targetToAnnotationType(attr, s)) .reduce(AnnotationType.NONE, this::combineAnnotationType); } private AnnotationType combineAnnotationType(AnnotationType at1, AnnotationType at2) { if (at1 == AnnotationType.NONE) { return at2; } else if (at2 == AnnotationType.NONE) { return at1; } else if (at1 != at2) { return AnnotationType.BOTH; } else { return at1; } } private AnnotationType targetToAnnotationType(Attribute a, Symbol s) { Attribute.Enum e = (Attribute.Enum)a; if (e.value.name == names.TYPE) { if (s.kind == TYP) return AnnotationType.DECLARATION; } else if (e.value.name == names.FIELD) { if (s.kind == VAR && s.owner.kind != MTH) return AnnotationType.DECLARATION; } else if (e.value.name == names.METHOD) { if (s.kind == MTH && !s.isConstructor()) return AnnotationType.DECLARATION; } else if (e.value.name == names.PARAMETER) { if (s.kind == VAR && s.owner.kind == MTH && (s.flags() & Flags.PARAMETER) != 0) return AnnotationType.DECLARATION; } else if (e.value.name == names.CONSTRUCTOR) { if (s.kind == MTH && s.isConstructor()) return AnnotationType.DECLARATION; } else if (e.value.name == names.LOCAL_VARIABLE) { if (s.kind == VAR && s.owner.kind == MTH && (s.flags() & Flags.PARAMETER) == 0) return AnnotationType.DECLARATION; } else if (e.value.name == names.ANNOTATION_TYPE) { if (s.kind == TYP && (s.flags() & Flags.ANNOTATION) != 0) return AnnotationType.DECLARATION; } else if (e.value.name == names.PACKAGE) { if (s.kind == PCK) return AnnotationType.DECLARATION; } else if (e.value.name == names.TYPE_USE) { if (s.kind == TYP || s.kind == VAR || (s.kind == MTH && !s.isConstructor() && !s.type.getReturnType().hasTag(TypeTag.VOID)) || (s.kind == MTH && s.isConstructor())) return AnnotationType.TYPE; } else if (e.value.name == names.TYPE_PARAMETER) { /* Irrelevant in this case */ // TYPE_PARAMETER doesn't aid in distinguishing between // Type annotations and declaration annotations on an // Element } else if (e.value.name == names.MODULE) { if (s.kind == MDL) return AnnotationType.DECLARATION; } else { Assert.error("annotationTargetType(): unrecognized Attribute name " + e.value.name + " (" + e.value.name.getClass() + ")"); return AnnotationType.DECLARATION; } return AnnotationType.NONE; } private class TypeAnnotationPositions extends TreeScanner { private final boolean sigOnly; TypeAnnotationPositions(boolean sigOnly) { this.sigOnly = sigOnly; } /* * When traversing the AST we keep the "frames" of visited * trees in order to determine the position of annotations. */ private List<JCTree> frames = List.nil(); protected void push(JCTree t) { frames = frames.prepend(t); } protected JCTree pop() { JCTree t = frames.head; frames = frames.tail; return t; } // could this be frames.elems.tail.head? private JCTree peek2() { return frames.tail.head; } @Override public void scan(JCTree tree) { push(tree); try { super.scan(tree); } finally { pop(); } } /** * Separates type annotations from declaration annotations. * This step is needed because in certain locations (where declaration * and type annotations can be mixed, e.g. the type of a field) * we never build an JCAnnotatedType. This step finds these * annotations and marks them as if they were part of the type. */ private void separateAnnotationsKinds(JCTree typetree, Type type, Symbol sym, TypeAnnotationPosition pos) { List<Attribute.Compound> allAnnotations = sym.getRawAttributes(); ListBuffer<Attribute.Compound> declAnnos = new ListBuffer<>(); ListBuffer<Attribute.TypeCompound> typeAnnos = new ListBuffer<>(); ListBuffer<Attribute.TypeCompound> onlyTypeAnnos = new ListBuffer<>(); for (Attribute.Compound a : allAnnotations) { switch (annotationTargetType(a, sym)) { case DECLARATION: declAnnos.append(a); break; case BOTH: { declAnnos.append(a); Attribute.TypeCompound ta = toTypeCompound(a, pos); typeAnnos.append(ta); break; } case TYPE: { Attribute.TypeCompound ta = toTypeCompound(a, pos); typeAnnos.append(ta); // Also keep track which annotations are only type annotations onlyTypeAnnos.append(ta); break; } } } // If we have no type annotations we are done for this Symbol if (typeAnnos.isEmpty()) { return; } // Reset decl annotations to the set {all - type only} sym.resetAnnotations(); sym.setDeclarationAttributes(declAnnos.toList()); List<Attribute.TypeCompound> typeAnnotations = typeAnnos.toList(); if (type == null) { // When type is null, put the type annotations to the symbol. // This is used for constructor return annotations, for which // we use the type of the enclosing class. type = sym.getEnclosingElement().asType(); // Declaration annotations are always allowed on constructor returns. // Therefore, use typeAnnotations instead of onlyTypeAnnos. typeWithAnnotations(typetree, type, typeAnnotations, typeAnnotations, pos); // Note that we don't use the result, the call to // typeWithAnnotations side-effects the type annotation positions. // This is important for constructors of nested classes. sym.appendUniqueTypeAttributes(typeAnnotations); return; } // type is non-null, add type annotations from declaration context to the type type = typeWithAnnotations(typetree, type, typeAnnotations, onlyTypeAnnos.toList(), pos); if (sym.getKind() == ElementKind.METHOD) { sym.type.asMethodType().restype = type; } else if (sym.getKind() == ElementKind.PARAMETER && currentLambda == null) { sym.type = type; if (sym.getQualifiedName().equals(names._this)) { sym.owner.type.asMethodType().recvtype = type; // note that the typeAnnotations will also be added to the owner below. } else { MethodType methType = sym.owner.type.asMethodType(); List<VarSymbol> params = ((MethodSymbol)sym.owner).params; List<Type> oldArgs = methType.argtypes; ListBuffer<Type> newArgs = new ListBuffer<>(); while (params.nonEmpty()) { if (params.head == sym) { newArgs.add(type); } else { newArgs.add(oldArgs.head); } oldArgs = oldArgs.tail; params = params.tail; } methType.argtypes = newArgs.toList(); } } else { sym.type = type; } sym.appendUniqueTypeAttributes(typeAnnotations); if (sym.getKind() == ElementKind.PARAMETER || sym.getKind() == ElementKind.LOCAL_VARIABLE || sym.getKind() == ElementKind.RESOURCE_VARIABLE || sym.getKind() == ElementKind.EXCEPTION_PARAMETER) { // Make sure all type annotations from the symbol are also // on the owner. If the owner is an initializer block, propagate // to the type. final long ownerFlags = sym.owner.flags(); if ((ownerFlags & Flags.BLOCK) != 0) { // Store init and clinit type annotations with the ClassSymbol // to allow output in Gen.normalizeDefs. ClassSymbol cs = (ClassSymbol) sym.owner.owner; if ((ownerFlags & Flags.STATIC) != 0) { cs.appendClassInitTypeAttributes(typeAnnotations); } else { cs.appendInitTypeAttributes(typeAnnotations); } } else { sym.owner.appendUniqueTypeAttributes(sym.getRawTypeAttributes()); } } } // This method has a similar purpose as // {@link com.sun.tools.javac.parser.JavacParser.insertAnnotationsToMostInner(JCExpression, List<JCTypeAnnotation>, boolean)} // We found a type annotation in a declaration annotation position, // for example, on the return type. // Such an annotation is _not_ part of an JCAnnotatedType tree and we therefore // need to set its position explicitly. // The method returns a copy of type that contains these annotations. // // As a side effect the method sets the type annotation position of "annotations". // Note that it is assumed that all annotations share the same position. private Type typeWithAnnotations(final JCTree typetree, final Type type, final List<Attribute.TypeCompound> annotations, final List<Attribute.TypeCompound> onlyTypeAnnotations, final TypeAnnotationPosition pos) { if (annotations.isEmpty()) { return type; } if (type.hasTag(TypeTag.ARRAY)) return rewriteArrayType((ArrayType)type, annotations, pos); if (type.hasTag(TypeTag.TYPEVAR)) { return type.annotatedType(onlyTypeAnnotations); } else if (type.getKind() == TypeKind.UNION) { // There is a TypeKind, but no TypeTag. JCTypeUnion tutree = (JCTypeUnion)typetree; JCExpression fst = tutree.alternatives.get(0); Type res = typeWithAnnotations(fst, fst.type, annotations, onlyTypeAnnotations, pos); fst.type = res; // TODO: do we want to set res as first element in uct.alternatives? // UnionClassType uct = (com.sun.tools.javac.code.Type.UnionClassType)type; // Return the un-annotated union-type. return type; } else { Type enclTy = type; Element enclEl = type.asElement(); JCTree enclTr = typetree; while (enclEl != null && enclEl.getKind() != ElementKind.PACKAGE && enclTy != null && enclTy.getKind() != TypeKind.NONE && enclTy.getKind() != TypeKind.ERROR && (enclTr.getKind() == JCTree.Kind.MEMBER_SELECT || enclTr.getKind() == JCTree.Kind.PARAMETERIZED_TYPE || enclTr.getKind() == JCTree.Kind.ANNOTATED_TYPE)) { // Iterate also over the type tree, not just the type: the type is already // completely resolved and we cannot distinguish where the annotation // belongs for a nested type. if (enclTr.getKind() == JCTree.Kind.MEMBER_SELECT) { // only change encl in this case. enclTy = enclTy.getEnclosingType(); enclEl = enclEl.getEnclosingElement(); enclTr = ((JCFieldAccess)enclTr).getExpression(); } else if (enclTr.getKind() == JCTree.Kind.PARAMETERIZED_TYPE) { enclTr = ((JCTypeApply)enclTr).getType(); } else { // only other option because of while condition enclTr = ((JCAnnotatedType)enclTr).getUnderlyingType(); } } /** We are trying to annotate some enclosing type, * but nothing more exists. */ if (enclTy != null && enclTy.hasTag(TypeTag.NONE)) { switch (onlyTypeAnnotations.size()) { case 0: // Don't issue an error if all type annotations are // also declaration annotations. // If the annotations are also declaration annotations, they are // illegal as type annotations but might be legal as declaration annotations. // The normal declaration annotation checks make sure that the use is valid. break; case 1: log.error(typetree.pos(), "cant.type.annotate.scoping.1", onlyTypeAnnotations); break; default: log.error(typetree.pos(), "cant.type.annotate.scoping", onlyTypeAnnotations); } return type; } // At this point we have visited the part of the nested // type that is written in the source code. // Now count from here to the actual top-level class to determine // the correct nesting. // The genericLocation for the annotation. ListBuffer<TypePathEntry> depth = new ListBuffer<>(); Type topTy = enclTy; while (enclEl != null && enclEl.getKind() != ElementKind.PACKAGE && topTy != null && topTy.getKind() != TypeKind.NONE && topTy.getKind() != TypeKind.ERROR) { topTy = topTy.getEnclosingType(); enclEl = enclEl.getEnclosingElement(); if (topTy != null && topTy.getKind() != TypeKind.NONE) { // Only count enclosing types. depth = depth.append(TypePathEntry.INNER_TYPE); } } if (depth.nonEmpty()) { // Only need to change the annotation positions // if they are on an enclosed type. // All annotations share the same position; modify the first one. Attribute.TypeCompound a = annotations.get(0); TypeAnnotationPosition p = a.position; p.location = p.location.appendList(depth.toList()); } Type ret = typeWithAnnotations(type, enclTy, annotations); typetree.type = ret; return ret; } } /** * Create a copy of the {@code Type type} with the help of the Tree for a type * {@code JCTree typetree} inserting all type annotations in {@code annotations} to the * innermost array component type. * * SIDE EFFECT: Update position for the annotations to be {@code pos}. */ private Type rewriteArrayType(ArrayType type, List<TypeCompound> annotations, TypeAnnotationPosition pos) { ArrayType tomodify = new ArrayType(type); ArrayType res = tomodify; List<TypePathEntry> loc = List.nil(); // peel one and update loc Type tmpType = type.elemtype; loc = loc.prepend(TypePathEntry.ARRAY); while (tmpType.hasTag(TypeTag.ARRAY)) { ArrayType arr = (ArrayType)tmpType; // Update last type with new element type ArrayType tmp = new ArrayType(arr); tomodify.elemtype = tmp; tomodify = tmp; tmpType = arr.elemtype; loc = loc.prepend(TypePathEntry.ARRAY); } // Fix innermost element type Type elemType; if (tmpType.getMetadata() != null) { List<TypeCompound> tcs; if (tmpType.getAnnotationMirrors().isEmpty()) { tcs = annotations; } else { // Special case, lets prepend tcs = annotations.appendList(tmpType.getAnnotationMirrors()); } elemType = tmpType.cloneWithMetadata(tmpType .getMetadata() .without(Kind.ANNOTATIONS) .combine(new TypeMetadata.Annotations(tcs))); } else { elemType = tmpType.cloneWithMetadata(new TypeMetadata(new TypeMetadata.Annotations(annotations))); } tomodify.elemtype = elemType; // Update positions for (TypeCompound tc : annotations) { if (tc.position == null) tc.position = pos; tc.position.location = loc; } return res; } /** Return a copy of the first type that only differs by * inserting the annotations to the left-most/inner-most type * or the type given by stopAt. * * We need the stopAt parameter to know where on a type to * put the annotations. * If we have nested classes Outer > Middle > Inner, and we * have the source type "@A Middle.Inner", we will invoke * this method with type = Outer.Middle.Inner, * stopAt = Middle.Inner, and annotations = @A. * * @param type The type to copy. * @param stopAt The type to stop at. * @param annotations The annotations to insert. * @return A copy of type that contains the annotations. */ private Type typeWithAnnotations(final Type type, final Type stopAt, final List<Attribute.TypeCompound> annotations) { Visitor<Type, List<TypeCompound>> visitor = new Type.Visitor<Type, List<Attribute.TypeCompound>>() { @Override public Type visitClassType(ClassType t, List<TypeCompound> s) { // assert that t.constValue() == null? if (t == stopAt || t.getEnclosingType() == Type.noType) { return t.annotatedType(s); } else { ClassType ret = new ClassType(t.getEnclosingType().accept(this, s), t.typarams_field, t.tsym, t.getMetadata()); ret.all_interfaces_field = t.all_interfaces_field; ret.allparams_field = t.allparams_field; ret.interfaces_field = t.interfaces_field; ret.rank_field = t.rank_field; ret.supertype_field = t.supertype_field; return ret; } } @Override public Type visitWildcardType(WildcardType t, List<TypeCompound> s) { return t.annotatedType(s); } @Override public Type visitArrayType(ArrayType t, List<TypeCompound> s) { ArrayType ret = new ArrayType(t.elemtype.accept(this, s), t.tsym, t.getMetadata()); return ret; } @Override public Type visitMethodType(MethodType t, List<TypeCompound> s) { // Impossible? return t; } @Override public Type visitPackageType(PackageType t, List<TypeCompound> s) { // Impossible? return t; } @Override public Type visitTypeVar(TypeVar t, List<TypeCompound> s) { return t.annotatedType(s); } @Override public Type visitModuleType(ModuleType t, List<TypeCompound> s) { return t.annotatedType(s); } @Override public Type visitCapturedType(CapturedType t, List<TypeCompound> s) { return t.annotatedType(s); } @Override public Type visitForAll(ForAll t, List<TypeCompound> s) { // Impossible? return t; } @Override public Type visitUndetVar(UndetVar t, List<TypeCompound> s) { // Impossible? return t; } @Override public Type visitErrorType(ErrorType t, List<TypeCompound> s) { return t.annotatedType(s); } @Override public Type visitType(Type t, List<TypeCompound> s) { return t.annotatedType(s); } }; return type.accept(visitor, annotations); } private Attribute.TypeCompound toTypeCompound(Attribute.Compound a, TypeAnnotationPosition p) { // It is safe to alias the position. return new Attribute.TypeCompound(a, p); } /* This is the beginning of the second part of organizing * type annotations: determine the type annotation positions. */ private TypeAnnotationPosition resolveFrame(JCTree tree, JCTree frame, List<JCTree> path, JCLambda currentLambda, int outer_type_index, ListBuffer<TypePathEntry> location) { // Note that p.offset is set in // com.sun.tools.javac.jvm.Gen.setTypeAnnotationPositions(int) switch (frame.getKind()) { case TYPE_CAST: return TypeAnnotationPosition.typeCast(location.toList(), currentLambda, outer_type_index, frame.pos); case INSTANCE_OF: return TypeAnnotationPosition.instanceOf(location.toList(), currentLambda, frame.pos); case NEW_CLASS: final JCNewClass frameNewClass = (JCNewClass) frame; if (frameNewClass.def != null) { // Special handling for anonymous class instantiations final JCClassDecl frameClassDecl = frameNewClass.def; if (frameClassDecl.implementing.contains(tree)) { final int type_index = frameClassDecl.implementing.indexOf(tree); return TypeAnnotationPosition .classExtends(location.toList(), currentLambda, type_index, frame.pos); } else { //for encl.new @TA Clazz(), tree may be different from frameClassDecl.extending return TypeAnnotationPosition .classExtends(location.toList(), currentLambda, frame.pos); } } else if (frameNewClass.typeargs.contains(tree)) { final int type_index = frameNewClass.typeargs.indexOf(tree); return TypeAnnotationPosition .constructorInvocationTypeArg(location.toList(), currentLambda, type_index, frame.pos); } else { return TypeAnnotationPosition .newObj(location.toList(), currentLambda, frame.pos); } case NEW_ARRAY: return TypeAnnotationPosition .newObj(location.toList(), currentLambda, frame.pos); case ANNOTATION_TYPE: case CLASS: case ENUM: case INTERFACE: if (((JCClassDecl)frame).extending == tree) { return TypeAnnotationPosition .classExtends(location.toList(), currentLambda, frame.pos); } else if (((JCClassDecl)frame).implementing.contains(tree)) { final int type_index = ((JCClassDecl)frame).implementing.indexOf(tree); return TypeAnnotationPosition .classExtends(location.toList(), currentLambda, type_index, frame.pos); } else if (((JCClassDecl)frame).typarams.contains(tree)) { final int parameter_index = ((JCClassDecl)frame).typarams.indexOf(tree); return TypeAnnotationPosition .typeParameter(location.toList(), currentLambda, parameter_index, frame.pos); } else { throw new AssertionError("Could not determine position of tree " + tree + " within frame " + frame); } case METHOD: { final JCMethodDecl frameMethod = (JCMethodDecl) frame; if (frameMethod.thrown.contains(tree)) { final int type_index = frameMethod.thrown.indexOf(tree); return TypeAnnotationPosition .methodThrows(location.toList(), currentLambda, type_index, frame.pos); } else if (frameMethod.restype == tree) { return TypeAnnotationPosition .methodReturn(location.toList(), currentLambda, frame.pos); } else if (frameMethod.typarams.contains(tree)) { final int parameter_index = frameMethod.typarams.indexOf(tree); return TypeAnnotationPosition .methodTypeParameter(location.toList(), currentLambda, parameter_index, frame.pos); } else { throw new AssertionError("Could not determine position of tree " + tree + " within frame " + frame); } } case PARAMETERIZED_TYPE: { List<JCTree> newPath = path.tail; if (((JCTypeApply)frame).clazz == tree) { // generic: RAW; noop } else if (((JCTypeApply)frame).arguments.contains(tree)) { JCTypeApply taframe = (JCTypeApply) frame; int arg = taframe.arguments.indexOf(tree); location = location.prepend( new TypePathEntry(TypePathEntryKind.TYPE_ARGUMENT, arg)); Type typeToUse; if (newPath.tail != null && newPath.tail.head.hasTag(Tag.NEWCLASS)) { // If we are within an anonymous class // instantiation, use its type, because it // contains a correctly nested type. typeToUse = newPath.tail.head.type; } else { typeToUse = taframe.type; } location = locateNestedTypes(typeToUse, location); } else { throw new AssertionError("Could not determine type argument position of tree " + tree + " within frame " + frame); } return resolveFrame(newPath.head, newPath.tail.head, newPath, currentLambda, outer_type_index, location); } case MEMBER_REFERENCE: { JCMemberReference mrframe = (JCMemberReference) frame; if (mrframe.expr == tree) { switch (mrframe.mode) { case INVOKE: return TypeAnnotationPosition .methodRef(location.toList(), currentLambda, frame.pos); case NEW: return TypeAnnotationPosition .constructorRef(location.toList(), currentLambda, frame.pos); default: throw new AssertionError("Unknown method reference mode " + mrframe.mode + " for tree " + tree + " within frame " + frame); } } else if (mrframe.typeargs != null && mrframe.typeargs.contains(tree)) { final int type_index = mrframe.typeargs.indexOf(tree); switch (mrframe.mode) { case INVOKE: return TypeAnnotationPosition .methodRefTypeArg(location.toList(), currentLambda, type_index, frame.pos); case NEW: return TypeAnnotationPosition .constructorRefTypeArg(location.toList(), currentLambda, type_index, frame.pos); default: throw new AssertionError("Unknown method reference mode " + mrframe.mode + " for tree " + tree + " within frame " + frame); } } else { throw new AssertionError("Could not determine type argument position of tree " + tree + " within frame " + frame); } } case ARRAY_TYPE: { location = location.prepend(TypePathEntry.ARRAY); List<JCTree> newPath = path.tail; while (true) { JCTree npHead = newPath.tail.head; if (npHead.hasTag(JCTree.Tag.TYPEARRAY)) { newPath = newPath.tail; location = location.prepend(TypePathEntry.ARRAY); } else if (npHead.hasTag(JCTree.Tag.ANNOTATED_TYPE)) { newPath = newPath.tail; } else { break; } } return resolveFrame(newPath.head, newPath.tail.head, newPath, currentLambda, outer_type_index, location); } case TYPE_PARAMETER: if (path.tail.tail.head.hasTag(JCTree.Tag.CLASSDEF)) { final JCClassDecl clazz = (JCClassDecl)path.tail.tail.head; final int parameter_index = clazz.typarams.indexOf(path.tail.head); final int bound_index = ((JCTypeParameter)frame).bounds.get(0) .type.isInterface() ? ((JCTypeParameter)frame).bounds.indexOf(tree) + 1: ((JCTypeParameter)frame).bounds.indexOf(tree); return TypeAnnotationPosition .typeParameterBound(location.toList(), currentLambda, parameter_index, bound_index, frame.pos); } else if (path.tail.tail.head.hasTag(JCTree.Tag.METHODDEF)) { final JCMethodDecl method = (JCMethodDecl)path.tail.tail.head; final int parameter_index = method.typarams.indexOf(path.tail.head); final int bound_index = ((JCTypeParameter)frame).bounds.get(0) .type.isInterface() ? ((JCTypeParameter)frame).bounds.indexOf(tree) + 1: ((JCTypeParameter)frame).bounds.indexOf(tree); return TypeAnnotationPosition .methodTypeParameterBound(location.toList(), currentLambda, parameter_index, bound_index, frame.pos); } else { throw new AssertionError("Could not determine position of tree " + tree + " within frame " + frame); } case VARIABLE: VarSymbol v = ((JCVariableDecl)frame).sym; if (v.getKind() != ElementKind.FIELD) { v.owner.appendUniqueTypeAttributes(v.getRawTypeAttributes()); } switch (v.getKind()) { case LOCAL_VARIABLE: return TypeAnnotationPosition .localVariable(location.toList(), currentLambda, frame.pos); case FIELD: return TypeAnnotationPosition.field(location.toList(), currentLambda, frame.pos); case PARAMETER: if (v.getQualifiedName().equals(names._this)) { return TypeAnnotationPosition .methodReceiver(location.toList(), currentLambda, frame.pos); } else { final int parameter_index = methodParamIndex(path, frame); return TypeAnnotationPosition .methodParameter(location.toList(), currentLambda, parameter_index, frame.pos); } case EXCEPTION_PARAMETER: return TypeAnnotationPosition .exceptionParameter(location.toList(), currentLambda, frame.pos); case RESOURCE_VARIABLE: return TypeAnnotationPosition .resourceVariable(location.toList(), currentLambda, frame.pos); default: throw new AssertionError("Found unexpected type annotation for variable: " + v + " with kind: " + v.getKind()); } case ANNOTATED_TYPE: { if (frame == tree) { // This is only true for the first annotated type we see. // For any other annotated types along the path, we do // not care about inner types. JCAnnotatedType atypetree = (JCAnnotatedType) frame; final Type utype = atypetree.underlyingType.type; Assert.checkNonNull(utype); Symbol tsym = utype.tsym; if (tsym.getKind().equals(ElementKind.TYPE_PARAMETER) || utype.getKind().equals(TypeKind.WILDCARD) || utype.getKind().equals(TypeKind.ARRAY)) { // Type parameters, wildcards, and arrays have the declaring // class/method as enclosing elements. // There is actually nothing to do for them. } else { location = locateNestedTypes(utype, location); } } List<JCTree> newPath = path.tail; return resolveFrame(newPath.head, newPath.tail.head, newPath, currentLambda, outer_type_index, location); } case UNION_TYPE: { List<JCTree> newPath = path.tail; return resolveFrame(newPath.head, newPath.tail.head, newPath, currentLambda, outer_type_index, location); } case INTERSECTION_TYPE: { JCTypeIntersection isect = (JCTypeIntersection)frame; final List<JCTree> newPath = path.tail; return resolveFrame(newPath.head, newPath.tail.head, newPath, currentLambda, isect.bounds.indexOf(tree), location); } case METHOD_INVOCATION: { JCMethodInvocation invocation = (JCMethodInvocation)frame; if (!invocation.typeargs.contains(tree)) { return TypeAnnotationPosition.unknown; } MethodSymbol exsym = (MethodSymbol) TreeInfo.symbol(invocation.getMethodSelect()); final int type_index = invocation.typeargs.indexOf(tree); if (exsym == null) { throw new AssertionError("could not determine symbol for {" + invocation + "}"); } else if (exsym.isConstructor()) { return TypeAnnotationPosition .constructorInvocationTypeArg(location.toList(), currentLambda, type_index, invocation.pos); } else { return TypeAnnotationPosition .methodInvocationTypeArg(location.toList(), currentLambda, type_index, invocation.pos); } } case EXTENDS_WILDCARD: case SUPER_WILDCARD: { // Annotations in wildcard bounds final List<JCTree> newPath = path.tail; return resolveFrame(newPath.head, newPath.tail.head, newPath, currentLambda, outer_type_index, location.prepend(TypePathEntry.WILDCARD)); } case MEMBER_SELECT: { final List<JCTree> newPath = path.tail; return resolveFrame(newPath.head, newPath.tail.head, newPath, currentLambda, outer_type_index, location); } default: throw new AssertionError("Unresolved frame: " + frame + " of kind: " + frame.getKind() + "\n Looking for tree: " + tree); } } private ListBuffer<TypePathEntry> locateNestedTypes(Type type, ListBuffer<TypePathEntry> depth) { Type encl = type.getEnclosingType(); while (encl != null && encl.getKind() != TypeKind.NONE && encl.getKind() != TypeKind.ERROR) { depth = depth.prepend(TypePathEntry.INNER_TYPE); encl = encl.getEnclosingType(); } return depth; } private int methodParamIndex(List<JCTree> path, JCTree param) { List<JCTree> curr = path; while (curr.head.getTag() != Tag.METHODDEF && curr.head.getTag() != Tag.LAMBDA) { curr = curr.tail; } if (curr.head.getTag() == Tag.METHODDEF) { JCMethodDecl method = (JCMethodDecl)curr.head; return method.params.indexOf(param); } else if (curr.head.getTag() == Tag.LAMBDA) { JCLambda lambda = (JCLambda)curr.head; return lambda.params.indexOf(param); } else { Assert.error("methodParamIndex expected to find method or lambda for param: " + param); return -1; } } // Each class (including enclosed inner classes) is visited separately. // This flag is used to prevent from visiting inner classes. private boolean isInClass = false; @Override public void visitClassDef(JCClassDecl tree) { if (isInClass) return; isInClass = true; if (sigOnly) { scan(tree.mods); scan(tree.typarams); scan(tree.extending); scan(tree.implementing); } scan(tree.defs); } /** * Resolve declaration vs. type annotations in methods and * then determine the positions. */ @Override public void visitMethodDef(final JCMethodDecl tree) { if (tree.sym == null) { Assert.error("Visiting tree node before memberEnter"); } if (sigOnly) { if (!tree.mods.annotations.isEmpty()) { if (tree.sym.isConstructor()) { final TypeAnnotationPosition pos = TypeAnnotationPosition.methodReturn(tree.pos); // Use null to mark that the annotations go // with the symbol. separateAnnotationsKinds(tree, null, tree.sym, pos); } else { final TypeAnnotationPosition pos = TypeAnnotationPosition.methodReturn(tree.restype.pos); separateAnnotationsKinds(tree.restype, tree.sym.type.getReturnType(), tree.sym, pos); } } if (tree.recvparam != null && tree.recvparam.sym != null && !tree.recvparam.mods.annotations.isEmpty()) { // Nothing to do for separateAnnotationsKinds if // there are no annotations of either kind. // TODO: make sure there are no declaration annotations. final TypeAnnotationPosition pos = TypeAnnotationPosition.methodReceiver(tree.recvparam.vartype.pos); push(tree.recvparam); try { separateAnnotationsKinds(tree.recvparam.vartype, tree.recvparam.sym.type, tree.recvparam.sym, pos); } finally { pop(); } } int i = 0; for (JCVariableDecl param : tree.params) { if (!param.mods.annotations.isEmpty()) { // Nothing to do for separateAnnotationsKinds if // there are no annotations of either kind. final TypeAnnotationPosition pos = TypeAnnotationPosition.methodParameter(i, param.vartype.pos); push(param); try { separateAnnotationsKinds(param.vartype, param.sym.type, param.sym, pos); } finally { pop(); } } ++i; } } if (sigOnly) { scan(tree.mods); scan(tree.restype); scan(tree.typarams); scan(tree.recvparam); scan(tree.params); scan(tree.thrown); } else { scan(tree.defaultValue); scan(tree.body); } } /* Store a reference to the current lambda expression, to * be used by all type annotations within this expression. */ private JCLambda currentLambda = null; public void visitLambda(JCLambda tree) { JCLambda prevLambda = currentLambda; try { currentLambda = tree; int i = 0; for (JCVariableDecl param : tree.params) { if (!param.mods.annotations.isEmpty()) { // Nothing to do for separateAnnotationsKinds if // there are no annotations of either kind. final TypeAnnotationPosition pos = TypeAnnotationPosition .methodParameter(tree, i, param.vartype.pos); push(param); try { separateAnnotationsKinds(param.vartype, param.sym.type, param.sym, pos); } finally { pop(); } } ++i; } scan(tree.body); scan(tree.params); } finally { currentLambda = prevLambda; } } /** * Resolve declaration vs. type annotations in variable declarations and * then determine the positions. */ @Override public void visitVarDef(final JCVariableDecl tree) { if (tree.mods.annotations.isEmpty()) { // Nothing to do for separateAnnotationsKinds if // there are no annotations of either kind. } else if (tree.sym == null) { Assert.error("Visiting tree node before memberEnter"); } else if (tree.sym.getKind() == ElementKind.PARAMETER) { // Parameters are handled in visitMethodDef or visitLambda. } else if (tree.sym.getKind() == ElementKind.FIELD) { if (sigOnly) { TypeAnnotationPosition pos = TypeAnnotationPosition.field(tree.pos); separateAnnotationsKinds(tree.vartype, tree.sym.type, tree.sym, pos); } } else if (tree.sym.getKind() == ElementKind.LOCAL_VARIABLE) { final TypeAnnotationPosition pos = TypeAnnotationPosition.localVariable(currentLambda, tree.pos); separateAnnotationsKinds(tree.vartype, tree.sym.type, tree.sym, pos); } else if (tree.sym.getKind() == ElementKind.EXCEPTION_PARAMETER) { final TypeAnnotationPosition pos = TypeAnnotationPosition.exceptionParameter(currentLambda, tree.pos); separateAnnotationsKinds(tree.vartype, tree.sym.type, tree.sym, pos); } else if (tree.sym.getKind() == ElementKind.RESOURCE_VARIABLE) { final TypeAnnotationPosition pos = TypeAnnotationPosition.resourceVariable(currentLambda, tree.pos); separateAnnotationsKinds(tree.vartype, tree.sym.type, tree.sym, pos); } else if (tree.sym.getKind() == ElementKind.ENUM_CONSTANT) { // No type annotations can occur here. } else { // There is nothing else in a variable declaration that needs separation. Assert.error("Unhandled variable kind"); } scan(tree.mods); scan(tree.vartype); if (!sigOnly) { scan(tree.init); } } @Override public void visitBlock(JCBlock tree) { // Do not descend into top-level blocks when only interested // in the signature. if (!sigOnly) { scan(tree.stats); } } @Override public void visitAnnotatedType(JCAnnotatedType tree) { push(tree); findPosition(tree, tree, tree.annotations); pop(); super.visitAnnotatedType(tree); } @Override public void visitTypeParameter(JCTypeParameter tree) { findPosition(tree, peek2(), tree.annotations); super.visitTypeParameter(tree); } private void copyNewClassAnnotationsToOwner(JCNewClass tree) { Symbol sym = tree.def.sym; final TypeAnnotationPosition pos = TypeAnnotationPosition.newObj(tree.pos); ListBuffer<Attribute.TypeCompound> newattrs = new ListBuffer<>(); for (Attribute.TypeCompound old : sym.getRawTypeAttributes()) { newattrs.append(new Attribute.TypeCompound(old.type, old.values, pos)); } sym.owner.appendUniqueTypeAttributes(newattrs.toList()); } @Override public void visitNewClass(JCNewClass tree) { if (tree.def != null && !tree.def.mods.annotations.isEmpty()) { JCClassDecl classdecl = tree.def; TypeAnnotationPosition pos; if (classdecl.extending == tree.clazz) { pos = TypeAnnotationPosition.classExtends(tree.pos); } else if (classdecl.implementing.contains(tree.clazz)) { final int index = classdecl.implementing.indexOf(tree.clazz); pos = TypeAnnotationPosition.classExtends(index, tree.pos); } else { // In contrast to CLASS elsewhere, typarams cannot occur here. throw new AssertionError("Could not determine position of tree " + tree); } Type before = classdecl.sym.type; separateAnnotationsKinds(classdecl, tree.clazz.type, classdecl.sym, pos); copyNewClassAnnotationsToOwner(tree); // classdecl.sym.type now contains an annotated type, which // is not what we want there. // TODO: should we put this type somewhere in the superclass/interface? classdecl.sym.type = before; } scan(tree.encl); scan(tree.typeargs); if (tree.def == null) { scan(tree.clazz); } // else super type will already have been scanned in the context of the anonymous class. scan(tree.args); // The class body will already be scanned. // scan(tree.def); } @Override public void visitNewArray(JCNewArray tree) { findPosition(tree, tree, tree.annotations); int dimAnnosCount = tree.dimAnnotations.size(); ListBuffer<TypePathEntry> depth = new ListBuffer<>(); // handle annotations associated with dimensions for (int i = 0; i < dimAnnosCount; ++i) { ListBuffer<TypePathEntry> location = new ListBuffer<TypePathEntry>(); if (i != 0) { depth = depth.append(TypePathEntry.ARRAY); location = location.appendList(depth.toList()); } final TypeAnnotationPosition p = TypeAnnotationPosition.newObj(location.toList(), currentLambda, tree.pos); setTypeAnnotationPos(tree.dimAnnotations.get(i), p); } // handle "free" annotations // int i = dimAnnosCount == 0 ? 0 : dimAnnosCount - 1; // TODO: is depth.size == i here? JCExpression elemType = tree.elemtype; depth = depth.append(TypePathEntry.ARRAY); while (elemType != null) { if (elemType.hasTag(JCTree.Tag.ANNOTATED_TYPE)) { JCAnnotatedType at = (JCAnnotatedType)elemType; final ListBuffer<TypePathEntry> locationbuf = locateNestedTypes(elemType.type, new ListBuffer<TypePathEntry>()); final List<TypePathEntry> location = locationbuf.toList().prependList(depth.toList()); final TypeAnnotationPosition p = TypeAnnotationPosition.newObj(location, currentLambda, tree.pos); setTypeAnnotationPos(at.annotations, p); elemType = at.underlyingType; } else if (elemType.hasTag(JCTree.Tag.TYPEARRAY)) { depth = depth.append(TypePathEntry.ARRAY); elemType = ((JCArrayTypeTree)elemType).elemtype; } else if (elemType.hasTag(JCTree.Tag.SELECT)) { elemType = ((JCFieldAccess)elemType).selected; } else { break; } } scan(tree.elems); } private void findTypeCompoundPosition(JCTree tree, JCTree frame, List<Attribute.TypeCompound> annotations) { if (!annotations.isEmpty()) { final TypeAnnotationPosition p = resolveFrame(tree, frame, frames, currentLambda, 0, new ListBuffer<>()); for (TypeCompound tc : annotations) tc.position = p; } } private void findPosition(JCTree tree, JCTree frame, List<JCAnnotation> annotations) { if (!annotations.isEmpty()) { final TypeAnnotationPosition p = resolveFrame(tree, frame, frames, currentLambda, 0, new ListBuffer<>()); setTypeAnnotationPos(annotations, p); } } private void setTypeAnnotationPos(List<JCAnnotation> annotations, TypeAnnotationPosition position) { // attribute might be null during DeferredAttr; // we will be back later. for (JCAnnotation anno : annotations) { if (anno.attribute != null) ((Attribute.TypeCompound) anno.attribute).position = position; } } @Override public String toString() { return super.toString() + ": sigOnly: " + sigOnly; } } }