/* * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package jdk.nashorn.internal.runtime; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.HashSet; import java.util.Map; import java.util.Set; /** * Immutable hash map implementation for properties. Properties are keyed on strings. * Copying and cloning is avoided by relying on immutability. * <p> * When adding an element to a hash table, only the head of a bin list is updated, thus * an add only requires the cloning of the bins array and adding an element to the head * of the bin list. Similarly for removal, only a portion of a bin list is updated. * <p> * A separate chronological list is kept for quick generation of keys and values, and, * for rehashing. * <p> * Details: * <p> * The main goal is to be able to retrieve properties from a map quickly, keying on * the property name (String.) A secondary, but important goal, is to keep maps * immutable, so that a map can be shared by multiple objects in a context. * Sharing maps allows objects to be categorized as having similar properties, a * fact that call site guards rely on. In this discussion, immutability allows us * to significantly reduce the amount of duplication we have in our maps. * <p> * The simplest of immutable maps is a basic singly linked list. New properties * are simply added to the head of the list. Ancestor maps are not affected by the * addition, since they continue to refer to their own head. Searching is done by * walking linearly though the elements until a match is found, O(N). * <p> * A hash map can be thought of as an optimization of a linked list map, where the * linked list is broken into fragments based on hashCode(key) . An array is use * to quickly reference these fragments, indexing on hashCode(key) mod tableSize * (tableSize is typically a power of 2 so that the mod is a fast masking * operation.) If the size of the table is sufficient large, then search time * approaches O(1). In fact, most bins in a hash table are typically empty or * contain a one element list. * <p> * For immutable hash maps, we can think of the hash map as an array of the shorter * linked list maps. If we add an element to the head of one of those lists, it * doesn't affect any ancestor maps. Thus adding an element to an immutable hash * map only requires cloning the array and inserting an element at the head of one * of the bins. * <p> * Using Java HashMaps we don't have enough control over the entries to allow us to * implement this technique, so we are forced to clone the entire hash map. * <p> * Removing elements is done similarly. We clone the array and then only modify * the bin containing the removed element. More often than not, the list contains * only one element (or is very short), so this is not very costly. When the list * has several items, we need to clone the list portion prior to the removed item. * <p> * Another requirement of property maps is that we need to be able to gather all * properties in chronological (add) order. We have been using LinkedHashMap to * provide this. For the implementation of immutable hash map, we use a singly * linked list that is linked in reverse chronological order. This means we simply * add new entries to the head of the list. If we need to work with the list in * forward order, it's simply a matter of allocating an array (size is known) and * back filling in reverse order. Removal of elements from the chronological list * is trickier. LinkedHashMap uses a doubly linked list to give constant time * removal. Immutable hash maps can't do that and maintain immutability. So we * manage the chronological list the same way we manage the bins, cloning up to the * point of removal. Don't panic. This cost is more than offset by the cost of * cloning an entire LinkedHashMap. Plus removal is far more rare than addition. * <p> * One more optimization. Maps with a small number of entries don't use the hash * map at all, the chronological list is used instead. * <p> * So the benefits from immutable arrays are; fewer objects and less copying. For * immutable hash map, when no removal is involved, the number of elements per * property is two (bin + chronological elements). For LinkedHashMap it is one * (larger element) times the number of maps that refer to the property. For * immutable hash map, addition is constant time. For LinkedHashMap it's O(N+C) * since we have to clone the older map. */ public final class PropertyHashMap implements Map <Object, Property> { /** Number of initial bins. Power of 2. */ private static final int INITIAL_BINS = 32; /** Threshold before using bins. */ private static final int LIST_THRESHOLD = 8; /** Initial map. */ public static final PropertyHashMap EMPTY_HASHMAP = new PropertyHashMap(); /** Number of properties in the map. */ private final int size; /** Threshold before growing the bins. */ private final int threshold; /** Reverse list of all properties. */ private final Element list; /** Hash map bins. */ private final Element[] bins; /** All properties as an array (lazy). */ private Property[] properties; /** * Empty map constructor. */ private PropertyHashMap() { this.size = 0; this.threshold = 0; this.bins = null; this.list = null; } /** * Clone Constructor * * @param map Original {@link PropertyHashMap}. */ private PropertyHashMap(final PropertyHashMap map) { this.size = map.size; this.threshold = map.threshold; this.bins = map.bins; this.list = map.list; } /** * Constructor used internally to extend a map * * @param size Size of the new {@link PropertyHashMap}. * @param bins The hash bins. * @param list The {@link Property} list. */ private PropertyHashMap(final int size, final Element[] bins, final Element list) { this.size = size; this.threshold = bins != null ? threeQuarters(bins.length) : 0; this.bins = bins; this.list = list; } /** * Clone a property map, replacing a property with a new one in the same place, * which is important for property iterations if a property changes types * @param property old property * @param newProperty new property * @return new property map */ public PropertyHashMap immutableReplace(final Property property, final Property newProperty) { assert property.getKey().equals(newProperty.getKey()) : "replacing properties with different keys: '" + property.getKey() + "' != '" + newProperty.getKey() + "'"; assert findElement(property.getKey()) != null : "replacing property that doesn't exist in map: '" + property.getKey() + "'"; return cloneMap().replaceNoClone(property.getKey(), newProperty); } /** * Clone a {@link PropertyHashMap} and add a {@link Property}. * * @param property {@link Property} to add. * * @return New {@link PropertyHashMap}. */ public PropertyHashMap immutableAdd(final Property property) { final int newSize = size + 1; PropertyHashMap newMap = cloneMap(newSize); newMap = newMap.addNoClone(property); return newMap; } /** * Clone a {@link PropertyHashMap} and add an array of properties. * * @param newProperties Properties to add. * * @return New {@link PropertyHashMap}. */ public PropertyHashMap immutableAdd(final Property... newProperties) { final int newSize = size + newProperties.length; PropertyHashMap newMap = cloneMap(newSize); for (final Property property : newProperties) { newMap = newMap.addNoClone(property); } return newMap; } /** * Clone a {@link PropertyHashMap} and add a collection of properties. * * @param newProperties Properties to add. * * @return New {@link PropertyHashMap}. */ public PropertyHashMap immutableAdd(final Collection<Property> newProperties) { if (newProperties != null) { final int newSize = size + newProperties.size(); PropertyHashMap newMap = cloneMap(newSize); for (final Property property : newProperties) { newMap = newMap.addNoClone(property); } return newMap; } return this; } /** * Clone a {@link PropertyHashMap} and remove a {@link Property}. * * @param property {@link Property} to remove. * * @return New {@link PropertyHashMap}. */ public PropertyHashMap immutableRemove(final Property property) { return immutableRemove(property.getKey()); } /** * Clone a {@link PropertyHashMap} and remove a {@link Property} based on its key. * * @param key Key of {@link Property} to remove. * * @return New {@link PropertyHashMap}. */ public PropertyHashMap immutableRemove(final Object key) { if (bins != null) { final int binIndex = binIndex(bins, key); final Element bin = bins[binIndex]; if (findElement(bin, key) != null) { final int newSize = size - 1; Element[] newBins = null; if (newSize >= LIST_THRESHOLD) { newBins = bins.clone(); newBins[binIndex] = removeFromList(bin, key); } final Element newList = removeFromList(list, key); return new PropertyHashMap(newSize, newBins, newList); } } else if (findElement(list, key) != null) { final int newSize = size - 1; return newSize != 0 ? new PropertyHashMap(newSize, null, removeFromList(list, key)) : EMPTY_HASHMAP; } return this; } /** * Find a {@link Property} in the {@link PropertyHashMap}. * * @param key Key of {@link Property} to find. * * @return {@link Property} matching key or {@code null} if not found. */ public Property find(final Object key) { final Element element = findElement(key); return element != null ? element.getProperty() : null; } /** * Return an array of properties in chronological order of adding. * * @return Array of all properties. */ Property[] getProperties() { if (properties == null) { final Property[] array = new Property[size]; int i = size; for (Element element = list; element != null; element = element.getLink()) { array[--i] = element.getProperty(); } properties = array; } return properties; } /** * Returns the bin index from the key. * * @param bins The bins array. * @param key {@link Property} key. * * @return The bin index. */ private static int binIndex(final Element[] bins, final Object key) { return key.hashCode() & bins.length - 1; } /** * Calculate the number of bins needed to contain n properties. * * @param n Number of elements. * * @return Number of bins required. */ private static int binsNeeded(final int n) { // 50% padding return 1 << 32 - Integer.numberOfLeadingZeros(n + (n >>> 1) | INITIAL_BINS - 1); } /** * Used to calculate the current capacity of the bins. * * @param n Number of bin slots. * * @return 75% of n. */ private static int threeQuarters(final int n) { return (n >>> 1) + (n >>> 2); } /** * Regenerate the bin table after changing the number of bins. * * @param list // List of all properties. * @param binSize // New size of bins. * * @return Populated bins. */ private static Element[] rehash(final Element list, final int binSize) { final Element[] newBins = new Element[binSize]; for (Element element = list; element != null; element = element.getLink()) { final Property property = element.getProperty(); final Object key = property.getKey(); final int binIndex = binIndex(newBins, key); newBins[binIndex] = new Element(newBins[binIndex], property); } return newBins; } /** * Locate an element based on key. * * @param key {@link Element} key. * * @return {@link Element} matching key or {@code null} if not found. */ private Element findElement(final Object key) { if (bins != null) { final int binIndex = binIndex(bins, key); return findElement(bins[binIndex], key); } return findElement(list, key); } /** * Locate an {@link Element} based on key from a specific list. * * @param elementList Head of {@link Element} list * @param key {@link Element} key. * @return {@link Element} matching key or {@code null} if not found. */ private static Element findElement(final Element elementList, final Object key) { final int hashCode = key.hashCode(); for (Element element = elementList; element != null; element = element.getLink()) { if (element.match(key, hashCode)) { return element; } } return null; } private PropertyHashMap cloneMap() { return new PropertyHashMap(size, bins == null ? null : bins.clone(), list); } /** * Clone {@link PropertyHashMap} to accommodate new size. * * @param newSize New size of {@link PropertyHashMap}. * * @return Cloned {@link PropertyHashMap} with new size. */ private PropertyHashMap cloneMap(final int newSize) { Element[] newBins; if (bins == null && newSize <= LIST_THRESHOLD) { newBins = null; } else if (newSize > threshold) { newBins = rehash(list, binsNeeded(newSize)); } else { newBins = bins.clone(); } return new PropertyHashMap(newSize, newBins, list); } /** * Add a {@link Property} to a temporary {@link PropertyHashMap}, that has * been already cloned. Removes duplicates if necessary. * * @param property {@link Property} to add. * * @return New {@link PropertyHashMap}. */ private PropertyHashMap addNoClone(final Property property) { int newSize = size; final Object key = property.getKey(); Element newList = list; if (bins != null) { final int binIndex = binIndex(bins, key); Element bin = bins[binIndex]; if (findElement(bin, key) != null) { newSize--; bin = removeFromList(bin, key); newList = removeFromList(list, key); } bins[binIndex] = new Element(bin, property); } else { if (findElement(list, key) != null) { newSize--; newList = removeFromList(list, key); } } newList = new Element(newList, property); return new PropertyHashMap(newSize, bins, newList); } private PropertyHashMap replaceNoClone(final Object key, final Property property) { if (bins != null) { final int binIndex = binIndex(bins, key); Element bin = bins[binIndex]; bin = replaceInList(bin, key, property); bins[binIndex] = bin; } Element newList = list; newList = replaceInList(newList, key, property); return new PropertyHashMap(size, bins, newList); } /** * Removes an {@link Element} from a specific list, avoiding duplication. * * @param list List to remove from. * @param key Key of {@link Element} to remove. * * @return New list with {@link Element} removed. */ private static Element removeFromList(final Element list, final Object key) { if (list == null) { return null; } final int hashCode = key.hashCode(); if (list.match(key, hashCode)) { return list.getLink(); } final Element head = new Element(null, list.getProperty()); Element previous = head; for (Element element = list.getLink(); element != null; element = element.getLink()) { if (element.match(key, hashCode)) { previous.setLink(element.getLink()); return head; } final Element next = new Element(null, element.getProperty()); previous.setLink(next); previous = next; } return list; } // for element x. if x get link matches, private static Element replaceInList(final Element list, final Object key, final Property property) { assert list != null; final int hashCode = key.hashCode(); if (list.match(key, hashCode)) { return new Element(list.getLink(), property); } final Element head = new Element(null, list.getProperty()); Element previous = head; for (Element element = list.getLink(); element != null; element = element.getLink()) { if (element.match(key, hashCode)) { previous.setLink(new Element(element.getLink(), property)); return head; } final Element next = new Element(null, element.getProperty()); previous.setLink(next); previous = next; } return list; } /* * Map implementation */ @Override public int size() { return size; } @Override public boolean isEmpty() { return size == 0; } @Override public boolean containsKey(final Object key) { assert key instanceof String || key instanceof Symbol; return findElement(key) != null; } @Override public boolean containsValue(final Object value) { if (value instanceof Property) { final Property property = (Property) value; final Element element = findElement(property.getKey()); return element != null && element.getProperty().equals(value); } return false; } @Override public Property get(final Object key) { assert key instanceof String || key instanceof Symbol; final Element element = findElement(key); return element != null ? element.getProperty() : null; } @Override public Property put(final Object key, final Property value) { throw new UnsupportedOperationException("Immutable map."); } @Override public Property remove(final Object key) { throw new UnsupportedOperationException("Immutable map."); } @Override public void putAll(final Map<? extends Object, ? extends Property> m) { throw new UnsupportedOperationException("Immutable map."); } @Override public void clear() { throw new UnsupportedOperationException("Immutable map."); } @Override public Set<Object> keySet() { final HashSet<Object> set = new HashSet<>(); for (Element element = list; element != null; element = element.getLink()) { set.add(element.getKey()); } return Collections.unmodifiableSet(set); } @Override public Collection<Property> values() { return Collections.unmodifiableList(Arrays.asList(getProperties())); } @Override public Set<Entry<Object, Property>> entrySet() { final HashSet<Entry<Object, Property>> set = new HashSet<>(); for (Element element = list; element != null; element = element.getLink()) { set.add(element); } return Collections.unmodifiableSet(set); } /** * List map element. */ static final class Element implements Entry<Object, Property> { /** Link for list construction. */ private Element link; /** Element property. */ private final Property property; /** Element key. Kept separate for performance.) */ private final Object key; /** Element key hash code. */ private final int hashCode; /* * Constructors */ Element(final Element link, final Property property) { this.link = link; this.property = property; this.key = property.getKey(); this.hashCode = this.key.hashCode(); } boolean match(final Object otherKey, final int otherHashCode) { return this.hashCode == otherHashCode && this.key.equals(otherKey); } /* * Entry implmentation. */ @Override public boolean equals(final Object other) { assert property != null && other != null; return other instanceof Element && property.equals(((Element)other).property); } @Override public Object getKey() { return key; } @Override public Property getValue() { return property; } @Override public int hashCode() { return hashCode; } @Override public Property setValue(final Property value) { throw new UnsupportedOperationException("Immutable map."); } @Override public String toString() { final StringBuffer sb = new StringBuffer(); sb.append('['); Element elem = this; do { sb.append(elem.getValue()); elem = elem.link; if (elem != null) { sb.append(" -> "); } } while (elem != null); sb.append(']'); return sb.toString(); } /* * Accessors */ Element getLink() { return link; } void setLink(final Element link) { this.link = link; } Property getProperty() { return property; } } }