package games.strategy.engine.random; import java.util.Random; /** * <h3>MersenneTwister and MersenneTwisterFast</h3> * * <p> * Version 9, based on version MT199937(99/10/29) of the Mersenne Twister algorithm found at * <a href="http://www.math.keio.ac.jp/matumoto/emt.html"> The Mersenne Twister Home Page</a>, with the initialization * improved using the new 2002/1/26 initialization algorithm By Sean Luke, October 2004. * </p> * * <p> * MersenneTwister is a drop-in subclass replacement for java.tools.Random. It is properly synchronized and can be * used in a multithreaded environment. On modern VMs such as HotSpot, it is approximately 1/3 slower than * java.tools.Random. * </p> * * <p> * MersenneTwisterFast is not a subclass of java.tools.Random. It has the same public methods as Random does, however, * and it is * algorithmically identical to MersenneTwister. MersenneTwisterFast has hard-code inlined all of its methods directly, * and made all of them * final (well, the ones of consequence anyway). Further, these methods are <i>not</i> synchronized, so the same * </p> * * <p> * MersenneTwisterFast * instance cannot be shared by multiple threads. But all this helps MersenneTwisterFast achieve well over twice the * speed of * MersenneTwister. java.tools.Random is about 1/3 slower than MersenneTwisterFast. * </p> * * <h3>About the Mersenne Twister</h3> * * <p> * This is a Java version of the C-program for MT19937: Integer version. The MT19937 algorithm was created by Makoto * Matsumoto and Takuji * Nishimura, who ask: * "When you use this, send an email to: matumoto@math.keio.ac.jp with an appropriate reference to your work". Indicate * that this is a translation of their algorithm into Java. * </p> * * <p> * <b>Reference. </b> Makato Matsumoto and Takuji Nishimura, * "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator", <i>ACM Transactions * on Modeling and Computer Simulation,</i> Vol. 8, No. 1, January 1998, pp 3--30. * </p> * * <p> * The MersenneTwister code is based on standard MT19937 C/C++ code by Takuji Nishimura, with suggestions from Topher * Cooper and Marc Rieffel, July 1997. The code was originally translated into Java by Michael Lecuyer, January 1999, * and the original code is Copyright (c) 1999 by Michael Lecuyer. * </p> */ public class MersenneTwister extends Random { private static final long serialVersionUID = -6946159560323874784L; // Period parameters private static final int N = 624; private static final int M = 397; private static final int MATRIX_A = 0x9908b0df; // most significant w-r bits private static final int UPPER_MASK = 0x80000000; // least significant r bits private static final int LOWER_MASK = 0x7fffffff; // Tempering parameters private static final int TEMPERING_MASK_B = 0x9d2c5680; private static final int TEMPERING_MASK_C = 0xefc60000; // the array for the state vector private int[] m_mt; // mti==N+1 means mt[N] is not initialized private int mti; private int[] mag01; /* * implemented here because there's a bug in Random's implementation * of the Gaussian code (divide by zero, and log(0), ugh!), yet its * gaussian variables are private so we can't access them here. :-( */ private double nextNextGaussian; private boolean haveNextNextGaussian; /** * Constructor using the default seed. */ public MersenneTwister() { this(System.currentTimeMillis()); } /** * Constructor using a given seed. Though you pass this seed in * as a long, it's best to make sure it's actually an integer. */ public MersenneTwister(final long seed) { super(seed); /* just in case */ setSeed(seed); } /** * Constructor using an array. */ public MersenneTwister(final int[] array) { super(System.currentTimeMillis()); /* pick something at random just in case */ setSeed(array); } /** * Initalize the pseudo random number generator. Don't * pass in a long that's bigger than an int (Mersenne Twister * only uses the first 32 bits for its seed). */ @Override public synchronized void setSeed(final long seed) { // it's always good style to call super super.setSeed(seed); // Due to a bug in java.tools.Random clear up to 1.2, we're // doing our own Gaussian variable. haveNextNextGaussian = false; m_mt = new int[N]; mag01 = new int[2]; mag01[0] = 0x0; mag01[1] = MATRIX_A; m_mt[0] = (int) (seed & 0xffffffff); for (mti = 1; mti < N; mti++) { m_mt[mti] = (1812433253 * (m_mt[mti - 1] ^ (m_mt[mti - 1] >>> 30)) + mti); /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ m_mt[mti] &= 0xffffffff; /* for >32 bit machines */ } } /** * An alternative, more complete, method of seeding the * pseudo random number generator. array must be an * array of 624 ints, and they can be any value as long as * they're not *all* zero. */ public synchronized void setSeed(final int[] array) { setSeed(19650218); int i = 1; int j = 0; int k = (N > array.length ? N : array.length); for (; k != 0; k--) { m_mt[i] = (m_mt[i] ^ ((m_mt[i - 1] ^ (m_mt[i - 1] >>> 30)) * 1664525)) + array[j] + j; /* non linear */ m_mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */ i++; j++; if (i >= N) { m_mt[0] = m_mt[N - 1]; i = 1; } if (j >= array.length) { j = 0; } } for (k = N - 1; k != 0; k--) { m_mt[i] = (m_mt[i] ^ ((m_mt[i - 1] ^ (m_mt[i - 1] >>> 30)) * 1566083941)) - i; /* non linear */ m_mt[i] &= 0xffffffff; /* for WORDSIZE > 32 machines */ i++; if (i >= N) { m_mt[0] = m_mt[N - 1]; i = 1; } } m_mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */ } /** * Returns an integer with <i>bits</i> bits filled with a random number. */ @Override protected synchronized int next(final int bits) { int y; if (mti >= N) { // generate N words at one time int kk; // locals are slightly faster final int[] mt = this.m_mt; // locals are slightly faster final int[] mag01 = this.mag01; for (kk = 0; kk < N - M; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (; kk < N - 1; kk++) { y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >>> 1) ^ mag01[y & 0x1]; mti = 0; } y = m_mt[mti++]; // TEMPERING_SHIFT_U(y) y ^= y >>> 11; // TEMPERING_SHIFT_S(y) y ^= (y << 7) & TEMPERING_MASK_B; // TEMPERING_SHIFT_T(y) y ^= (y << 15) & TEMPERING_MASK_C; // TEMPERING_SHIFT_L(y) y ^= (y >>> 18); // hope that's right! return y >>> (32 - bits); } /** * This method is missing from jdk 1.0.x and below. JDK 1.1 * includes this for us, but what the heck. */ @Override public boolean nextBoolean() { return next(1) != 0; } /** * This method is missing from JDK 1.1 and below. JDK 1.2 * includes this for us, but what the heck. */ @Override public int nextInt(final int n) { if (n <= 0) { throw new IllegalArgumentException("n must be >= 0"); } if ((n & -n) == n) { return (int) ((n * (long) next(31)) >> 31); } int bits; int val; do { bits = next(31); val = bits % n; } while (bits - val + (n - 1) < 0); return val; } /** * A bug fix for versions of JDK 1.1 and below. JDK 1.2 fixes * this for us, but what the heck. */ @Override public double nextDouble() { return (((long) next(26) << 27) + next(27)) / (double) (1L << 53); } /** * A bug fix for versions of JDK 1.1 and below. JDK 1.2 fixes * this for us, but what the heck. */ @Override public float nextFloat() { return next(24) / ((float) (1 << 24)); } /** * A bug fix for all versions of the JDK. The JDK appears to * use all four bytes in an integer as independent byte values! * Totally wrong. I've submitted a bug report. */ @Override public void nextBytes(final byte[] bytes) { for (int x = 0; x < bytes.length; x++) { bytes[x] = (byte) next(8); } } /** * A bug fix for all JDK code including 1.2. nextGaussian can theoretically * ask for the log of 0 and divide it by 0! See Java bug * <a href="http://developer.java.sun.com/developer/bugParade/bugs/4254501.html"> * http://developer.java.sun.com/developer/bugParade/bugs/4254501.html</a> */ @Override public synchronized double nextGaussian() { if (haveNextNextGaussian) { haveNextNextGaussian = false; return nextNextGaussian; } else { double v1; double v2; double s; do { // between -1.0 and 1.0 v1 = 2 * nextDouble() - 1; // between -1.0 and 1.0 v2 = 2 * nextDouble() - 1; s = v1 * v1 + v2 * v2; } while (s >= 1 || s == 0); final double multiplier = /* Strict */Math.sqrt(-2 * /* Strict */Math.log(s) / s); nextNextGaussian = v2 * multiplier; haveNextNextGaussian = true; return v1 * multiplier; } } }