/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.ode.nonstiff; import org.apache.commons.math3.Field; import org.apache.commons.math3.RealFieldElement; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.exception.MaxCountExceededException; import org.apache.commons.math3.exception.NoBracketingException; import org.apache.commons.math3.exception.NumberIsTooSmallException; import org.apache.commons.math3.ode.AbstractFieldIntegrator; import org.apache.commons.math3.ode.FieldEquationsMapper; import org.apache.commons.math3.ode.FieldExpandableODE; import org.apache.commons.math3.ode.FirstOrderFieldDifferentialEquations; import org.apache.commons.math3.ode.FieldODEState; import org.apache.commons.math3.ode.FieldODEStateAndDerivative; import org.apache.commons.math3.util.MathArrays; /** * This class implements the common part of all fixed step Runge-Kutta * integrators for Ordinary Differential Equations. * * <p>These methods are explicit Runge-Kutta methods, their Butcher * arrays are as follows : * <pre> * 0 | * c2 | a21 * c3 | a31 a32 * ... | ... * cs | as1 as2 ... ass-1 * |-------------------------- * | b1 b2 ... bs-1 bs * </pre> * </p> * * @see EulerFieldIntegrator * @see ClassicalRungeKuttaFieldIntegrator * @see GillFieldIntegrator * @see MidpointFieldIntegrator * @param <T> the type of the field elements * @since 3.6 */ public abstract class RungeKuttaFieldIntegrator<T extends RealFieldElement<T>> extends AbstractFieldIntegrator<T> implements FieldButcherArrayProvider<T> { /** Time steps from Butcher array (without the first zero). */ private final T[] c; /** Internal weights from Butcher array (without the first empty row). */ private final T[][] a; /** External weights for the high order method from Butcher array. */ private final T[] b; /** Integration step. */ private final T step; /** Simple constructor. * Build a Runge-Kutta integrator with the given * step. The default step handler does nothing. * @param field field to which the time and state vector elements belong * @param name name of the method * @param step integration step */ protected RungeKuttaFieldIntegrator(final Field<T> field, final String name, final T step) { super(field, name); this.c = getC(); this.a = getA(); this.b = getB(); this.step = step.abs(); } /** Create a fraction. * @param p numerator * @param q denominator * @return p/q computed in the instance field */ protected T fraction(final int p, final int q) { return getField().getZero().add(p).divide(q); } /** Create an interpolator. * @param forward integration direction indicator * @param yDotK slopes at the intermediate points * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param mapper equations mapper for the all equations * @return external weights for the high order method from Butcher array */ protected abstract RungeKuttaFieldStepInterpolator<T> createInterpolator(boolean forward, T[][] yDotK, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, FieldEquationsMapper<T> mapper); /** {@inheritDoc} */ public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations, final FieldODEState<T> initialState, final T finalTime) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException { sanityChecks(initialState, finalTime); final T t0 = initialState.getTime(); final T[] y0 = equations.getMapper().mapState(initialState); setStepStart(initIntegration(equations, t0, y0, finalTime)); final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0; // create some internal working arrays final int stages = c.length + 1; T[] y = y0; final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1); final T[] yTmp = MathArrays.buildArray(getField(), y0.length); // set up integration control objects if (forward) { if (getStepStart().getTime().add(step).subtract(finalTime).getReal() >= 0) { setStepSize(finalTime.subtract(getStepStart().getTime())); } else { setStepSize(step); } } else { if (getStepStart().getTime().subtract(step).subtract(finalTime).getReal() <= 0) { setStepSize(finalTime.subtract(getStepStart().getTime())); } else { setStepSize(step.negate()); } } // main integration loop setIsLastStep(false); do { // first stage y = equations.getMapper().mapState(getStepStart()); yDotK[0] = equations.getMapper().mapDerivative(getStepStart()); // next stages for (int k = 1; k < stages; ++k) { for (int j = 0; j < y0.length; ++j) { T sum = yDotK[0][j].multiply(a[k-1][0]); for (int l = 1; l < k; ++l) { sum = sum.add(yDotK[l][j].multiply(a[k-1][l])); } yTmp[j] = y[j].add(getStepSize().multiply(sum)); } yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp); } // estimate the state at the end of the step for (int j = 0; j < y0.length; ++j) { T sum = yDotK[0][j].multiply(b[0]); for (int l = 1; l < stages; ++l) { sum = sum.add(yDotK[l][j].multiply(b[l])); } yTmp[j] = y[j].add(getStepSize().multiply(sum)); } final T stepEnd = getStepStart().getTime().add(getStepSize()); final T[] yDotTmp = computeDerivatives(stepEnd, yTmp); final FieldODEStateAndDerivative<T> stateTmp = new FieldODEStateAndDerivative<T>(stepEnd, yTmp, yDotTmp); // discrete events handling System.arraycopy(yTmp, 0, y, 0, y0.length); setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()), finalTime)); if (!isLastStep()) { // stepsize control for next step final T nextT = getStepStart().getTime().add(getStepSize()); final boolean nextIsLast = forward ? (nextT.subtract(finalTime).getReal() >= 0) : (nextT.subtract(finalTime).getReal() <= 0); if (nextIsLast) { setStepSize(finalTime.subtract(getStepStart().getTime())); } } } while (!isLastStep()); final FieldODEStateAndDerivative<T> finalState = getStepStart(); setStepStart(null); setStepSize(null); return finalState; } /** Fast computation of a single step of ODE integration. * <p>This method is intended for the limited use case of * very fast computation of only one step without using any of the * rich features of general integrators that may take some time * to set up (i.e. no step handlers, no events handlers, no additional * states, no interpolators, no error control, no evaluations count, * no sanity checks ...). It handles the strict minimum of computation, * so it can be embedded in outer loops.</p> * <p> * This method is <em>not</em> used at all by the {@link #integrate(FieldExpandableODE, * FieldODEState, RealFieldElement)} method. It also completely ignores the step set at * construction time, and uses only a single step to go from {@code t0} to {@code t}. * </p> * <p> * As this method does not use any of the state-dependent features of the integrator, * it should be reasonably thread-safe <em>if and only if</em> the provided differential * equations are themselves thread-safe. * </p> * @param equations differential equations to integrate * @param t0 initial time * @param y0 initial value of the state vector at t0 * @param t target time for the integration * (can be set to a value smaller than {@code t0} for backward integration) * @return state vector at {@code t} */ public T[] singleStep(final FirstOrderFieldDifferentialEquations<T> equations, final T t0, final T[] y0, final T t) { // create some internal working arrays final T[] y = y0.clone(); final int stages = c.length + 1; final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1); final T[] yTmp = y0.clone(); // first stage final T h = t.subtract(t0); yDotK[0] = equations.computeDerivatives(t0, y); // next stages for (int k = 1; k < stages; ++k) { for (int j = 0; j < y0.length; ++j) { T sum = yDotK[0][j].multiply(a[k-1][0]); for (int l = 1; l < k; ++l) { sum = sum.add(yDotK[l][j].multiply(a[k-1][l])); } yTmp[j] = y[j].add(h.multiply(sum)); } yDotK[k] = equations.computeDerivatives(t0.add(h.multiply(c[k-1])), yTmp); } // estimate the state at the end of the step for (int j = 0; j < y0.length; ++j) { T sum = yDotK[0][j].multiply(b[0]); for (int l = 1; l < stages; ++l) { sum = sum.add(yDotK[l][j].multiply(b[l])); } y[j] = y[j].add(h.multiply(sum)); } return y; } }