/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.ode.nonstiff; import org.apache.commons.math3.ode.AbstractIntegrator; import org.apache.commons.math3.ode.EquationsMapper; import org.apache.commons.math3.ode.sampling.StepInterpolator; /** * This class represents an interpolator over the last step during an * ODE integration for the 5(4) Dormand-Prince integrator. * * @see DormandPrince54Integrator * * @since 1.2 */ class DormandPrince54StepInterpolator extends RungeKuttaStepInterpolator { /** Last row of the Butcher-array internal weights, element 0. */ private static final double A70 = 35.0 / 384.0; // element 1 is zero, so it is neither stored nor used /** Last row of the Butcher-array internal weights, element 2. */ private static final double A72 = 500.0 / 1113.0; /** Last row of the Butcher-array internal weights, element 3. */ private static final double A73 = 125.0 / 192.0; /** Last row of the Butcher-array internal weights, element 4. */ private static final double A74 = -2187.0 / 6784.0; /** Last row of the Butcher-array internal weights, element 5. */ private static final double A75 = 11.0 / 84.0; /** Shampine (1986) Dense output, element 0. */ private static final double D0 = -12715105075.0 / 11282082432.0; // element 1 is zero, so it is neither stored nor used /** Shampine (1986) Dense output, element 2. */ private static final double D2 = 87487479700.0 / 32700410799.0; /** Shampine (1986) Dense output, element 3. */ private static final double D3 = -10690763975.0 / 1880347072.0; /** Shampine (1986) Dense output, element 4. */ private static final double D4 = 701980252875.0 / 199316789632.0; /** Shampine (1986) Dense output, element 5. */ private static final double D5 = -1453857185.0 / 822651844.0; /** Shampine (1986) Dense output, element 6. */ private static final double D6 = 69997945.0 / 29380423.0; /** Serializable version identifier. */ private static final long serialVersionUID = 20111120L; /** First vector for interpolation. */ private double[] v1; /** Second vector for interpolation. */ private double[] v2; /** Third vector for interpolation. */ private double[] v3; /** Fourth vector for interpolation. */ private double[] v4; /** Initialization indicator for the interpolation vectors. */ private boolean vectorsInitialized; /** Simple constructor. * This constructor builds an instance that is not usable yet, the * {@link #reinitialize} method should be called before using the * instance in order to initialize the internal arrays. This * constructor is used only in order to delay the initialization in * some cases. The {@link EmbeddedRungeKuttaIntegrator} uses the * prototyping design pattern to create the step interpolators by * cloning an uninitialized model and latter initializing the copy. */ // CHECKSTYLE: stop RedundantModifier // the public modifier here is needed for serialization public DormandPrince54StepInterpolator() { super(); v1 = null; v2 = null; v3 = null; v4 = null; vectorsInitialized = false; } // CHECKSTYLE: resume RedundantModifier /** Copy constructor. * @param interpolator interpolator to copy from. The copy is a deep * copy: its arrays are separated from the original arrays of the * instance */ DormandPrince54StepInterpolator(final DormandPrince54StepInterpolator interpolator) { super(interpolator); if (interpolator.v1 == null) { v1 = null; v2 = null; v3 = null; v4 = null; vectorsInitialized = false; } else { v1 = interpolator.v1.clone(); v2 = interpolator.v2.clone(); v3 = interpolator.v3.clone(); v4 = interpolator.v4.clone(); vectorsInitialized = interpolator.vectorsInitialized; } } /** {@inheritDoc} */ @Override protected StepInterpolator doCopy() { return new DormandPrince54StepInterpolator(this); } /** {@inheritDoc} */ @Override public void reinitialize(final AbstractIntegrator integrator, final double[] y, final double[][] yDotK, final boolean forward, final EquationsMapper primaryMapper, final EquationsMapper[] secondaryMappers) { super.reinitialize(integrator, y, yDotK, forward, primaryMapper, secondaryMappers); v1 = null; v2 = null; v3 = null; v4 = null; vectorsInitialized = false; } /** {@inheritDoc} */ @Override public void storeTime(final double t) { super.storeTime(t); vectorsInitialized = false; } /** {@inheritDoc} */ @Override protected void computeInterpolatedStateAndDerivatives(final double theta, final double oneMinusThetaH) { if (! vectorsInitialized) { if (v1 == null) { v1 = new double[interpolatedState.length]; v2 = new double[interpolatedState.length]; v3 = new double[interpolatedState.length]; v4 = new double[interpolatedState.length]; } // no step finalization is needed for this interpolator // we need to compute the interpolation vectors for this time step for (int i = 0; i < interpolatedState.length; ++i) { final double yDot0 = yDotK[0][i]; final double yDot2 = yDotK[2][i]; final double yDot3 = yDotK[3][i]; final double yDot4 = yDotK[4][i]; final double yDot5 = yDotK[5][i]; final double yDot6 = yDotK[6][i]; v1[i] = A70 * yDot0 + A72 * yDot2 + A73 * yDot3 + A74 * yDot4 + A75 * yDot5; v2[i] = yDot0 - v1[i]; v3[i] = v1[i] - v2[i] - yDot6; v4[i] = D0 * yDot0 + D2 * yDot2 + D3 * yDot3 + D4 * yDot4 + D5 * yDot5 + D6 * yDot6; } vectorsInitialized = true; } // interpolate final double eta = 1 - theta; final double twoTheta = 2 * theta; final double dot2 = 1 - twoTheta; final double dot3 = theta * (2 - 3 * theta); final double dot4 = twoTheta * (1 + theta * (twoTheta - 3)); if ((previousState != null) && (theta <= 0.5)) { for (int i = 0; i < interpolatedState.length; ++i) { interpolatedState[i] = previousState[i] + theta * h * (v1[i] + eta * (v2[i] + theta * (v3[i] + eta * v4[i]))); interpolatedDerivatives[i] = v1[i] + dot2 * v2[i] + dot3 * v3[i] + dot4 * v4[i]; } } else { for (int i = 0; i < interpolatedState.length; ++i) { interpolatedState[i] = currentState[i] - oneMinusThetaH * (v1[i] - theta * (v2[i] + theta * (v3[i] + eta * v4[i]))); interpolatedDerivatives[i] = v1[i] + dot2 * v2[i] + dot3 * v3[i] + dot4 * v4[i]; } } } }