/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.ode.nonstiff; import org.apache.commons.math3.Field; import org.apache.commons.math3.RealFieldElement; import org.apache.commons.math3.exception.MaxCountExceededException; import org.apache.commons.math3.ode.FieldEquationsMapper; import org.apache.commons.math3.ode.FieldODEStateAndDerivative; import org.apache.commons.math3.util.MathArrays; /** * This class represents an interpolator over the last step during an * ODE integration for the 8(5,3) Dormand-Prince integrator. * * @see DormandPrince853FieldIntegrator * * @param <T> the type of the field elements * @since 3.6 */ class DormandPrince853FieldStepInterpolator<T extends RealFieldElement<T>> extends RungeKuttaFieldStepInterpolator<T> { /** Interpolation weights. * (beware that only the non-null values are in the table) */ private final T[][] d; /** Simple constructor. * @param field field to which the time and state vector elements belong * @param forward integration direction indicator * @param yDotK slopes at the intermediate points * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param softPreviousState start of the restricted step * @param softCurrentState end of the restricted step * @param mapper equations mapper for the all equations */ DormandPrince853FieldStepInterpolator(final Field<T> field, final boolean forward, final T[][] yDotK, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldODEStateAndDerivative<T> softPreviousState, final FieldODEStateAndDerivative<T> softCurrentState, final FieldEquationsMapper<T> mapper) { super(field, forward, yDotK, globalPreviousState, globalCurrentState, softPreviousState, softCurrentState, mapper); // interpolation weights d = MathArrays.buildArray(field, 7, 16); // this row is the same as the b array d[0][ 0] = fraction(field, 104257, 1920240); d[0][ 1] = field.getZero(); d[0][ 2] = field.getZero(); d[0][ 3] = field.getZero(); d[0][ 4] = field.getZero(); d[0][ 5] = fraction(field, 3399327.0, 763840.0); d[0][ 6] = fraction(field, 66578432.0, 35198415.0); d[0][ 7] = fraction(field, -1674902723.0, 288716400.0); d[0][ 8] = fraction(field, 54980371265625.0, 176692375811392.0); d[0][ 9] = fraction(field, -734375.0, 4826304.0); d[0][10] = fraction(field, 171414593.0, 851261400.0); d[0][11] = fraction(field, 137909.0, 3084480.0); d[0][12] = field.getZero(); d[0][13] = field.getZero(); d[0][14] = field.getZero(); d[0][15] = field.getZero(); d[1][ 0] = d[0][ 0].negate().add(1); d[1][ 1] = d[0][ 1].negate(); d[1][ 2] = d[0][ 2].negate(); d[1][ 3] = d[0][ 3].negate(); d[1][ 4] = d[0][ 4].negate(); d[1][ 5] = d[0][ 5].negate(); d[1][ 6] = d[0][ 6].negate(); d[1][ 7] = d[0][ 7].negate(); d[1][ 8] = d[0][ 8].negate(); d[1][ 9] = d[0][ 9].negate(); d[1][10] = d[0][10].negate(); d[1][11] = d[0][11].negate(); d[1][12] = d[0][12].negate(); // really 0 d[1][13] = d[0][13].negate(); // really 0 d[1][14] = d[0][14].negate(); // really 0 d[1][15] = d[0][15].negate(); // really 0 d[2][ 0] = d[0][ 0].multiply(2).subtract(1); d[2][ 1] = d[0][ 1].multiply(2); d[2][ 2] = d[0][ 2].multiply(2); d[2][ 3] = d[0][ 3].multiply(2); d[2][ 4] = d[0][ 4].multiply(2); d[2][ 5] = d[0][ 5].multiply(2); d[2][ 6] = d[0][ 6].multiply(2); d[2][ 7] = d[0][ 7].multiply(2); d[2][ 8] = d[0][ 8].multiply(2); d[2][ 9] = d[0][ 9].multiply(2); d[2][10] = d[0][10].multiply(2); d[2][11] = d[0][11].multiply(2); d[2][12] = d[0][12].multiply(2).subtract(1); // really -1 d[2][13] = d[0][13].multiply(2); // really 0 d[2][14] = d[0][14].multiply(2); // really 0 d[2][15] = d[0][15].multiply(2); // really 0 d[3][ 0] = fraction(field, -17751989329.0, 2106076560.0); d[3][ 1] = field.getZero(); d[3][ 2] = field.getZero(); d[3][ 3] = field.getZero(); d[3][ 4] = field.getZero(); d[3][ 5] = fraction(field, 4272954039.0, 7539864640.0); d[3][ 6] = fraction(field, -118476319744.0, 38604839385.0); d[3][ 7] = fraction(field, 755123450731.0, 316657731600.0); d[3][ 8] = fraction(field, 3692384461234828125.0, 1744130441634250432.0); d[3][ 9] = fraction(field, -4612609375.0, 5293382976.0); d[3][10] = fraction(field, 2091772278379.0, 933644586600.0); d[3][11] = fraction(field, 2136624137.0, 3382989120.0); d[3][12] = fraction(field, -126493.0, 1421424.0); d[3][13] = fraction(field, 98350000.0, 5419179.0); d[3][14] = fraction(field, -18878125.0, 2053168.0); d[3][15] = fraction(field, -1944542619.0, 438351368.0); d[4][ 0] = fraction(field, 32941697297.0, 3159114840.0); d[4][ 1] = field.getZero(); d[4][ 2] = field.getZero(); d[4][ 3] = field.getZero(); d[4][ 4] = field.getZero(); d[4][ 5] = fraction(field, 456696183123.0, 1884966160.0); d[4][ 6] = fraction(field, 19132610714624.0, 115814518155.0); d[4][ 7] = fraction(field, -177904688592943.0, 474986597400.0); d[4][ 8] = fraction(field, -4821139941836765625.0, 218016305204281304.0); d[4][ 9] = fraction(field, 30702015625.0, 3970037232.0); d[4][10] = fraction(field, -85916079474274.0, 2800933759800.0); d[4][11] = fraction(field, -5919468007.0, 634310460.0); d[4][12] = fraction(field, 2479159.0, 157936.0); d[4][13] = fraction(field, -18750000.0, 602131.0); d[4][14] = fraction(field, -19203125.0, 2053168.0); d[4][15] = fraction(field, 15700361463.0, 438351368.0); d[5][ 0] = fraction(field, 12627015655.0, 631822968.0); d[5][ 1] = field.getZero(); d[5][ 2] = field.getZero(); d[5][ 3] = field.getZero(); d[5][ 4] = field.getZero(); d[5][ 5] = fraction(field, -72955222965.0, 188496616.0); d[5][ 6] = fraction(field, -13145744952320.0, 69488710893.0); d[5][ 7] = fraction(field, 30084216194513.0, 56998391688.0); d[5][ 8] = fraction(field, -296858761006640625.0, 25648977082856624.0); d[5][ 9] = fraction(field, 569140625.0, 82709109.0); d[5][10] = fraction(field, -18684190637.0, 18672891732.0); d[5][11] = fraction(field, 69644045.0, 89549712.0); d[5][12] = fraction(field, -11847025.0, 4264272.0); d[5][13] = fraction(field, -978650000.0, 16257537.0); d[5][14] = fraction(field, 519371875.0, 6159504.0); d[5][15] = fraction(field, 5256837225.0, 438351368.0); d[6][ 0] = fraction(field, -450944925.0, 17550638.0); d[6][ 1] = field.getZero(); d[6][ 2] = field.getZero(); d[6][ 3] = field.getZero(); d[6][ 4] = field.getZero(); d[6][ 5] = fraction(field, -14532122925.0, 94248308.0); d[6][ 6] = fraction(field, -595876966400.0, 2573655959.0); d[6][ 7] = fraction(field, 188748653015.0, 527762886.0); d[6][ 8] = fraction(field, 2545485458115234375.0, 27252038150535163.0); d[6][ 9] = fraction(field, -1376953125.0, 36759604.0); d[6][10] = fraction(field, 53995596795.0, 518691437.0); d[6][11] = fraction(field, 210311225.0, 7047894.0); d[6][12] = fraction(field, -1718875.0, 39484.0); d[6][13] = fraction(field, 58000000.0, 602131.0); d[6][14] = fraction(field, -1546875.0, 39484.0); d[6][15] = fraction(field, -1262172375.0, 8429834.0); } /** {@inheritDoc} */ @Override protected DormandPrince853FieldStepInterpolator<T> create(final Field<T> newField, final boolean newForward, final T[][] newYDotK, final FieldODEStateAndDerivative<T> newGlobalPreviousState, final FieldODEStateAndDerivative<T> newGlobalCurrentState, final FieldODEStateAndDerivative<T> newSoftPreviousState, final FieldODEStateAndDerivative<T> newSoftCurrentState, final FieldEquationsMapper<T> newMapper) { return new DormandPrince853FieldStepInterpolator<T>(newField, newForward, newYDotK, newGlobalPreviousState, newGlobalCurrentState, newSoftPreviousState, newSoftCurrentState, newMapper); } /** Create a fraction. * @param field field to which the elements belong * @param p numerator * @param q denominator * @return p/q computed in the instance field */ private T fraction(final Field<T> field, final double p, final double q) { return field.getZero().add(p).divide(q); } /** {@inheritDoc} */ @SuppressWarnings("unchecked") @Override protected FieldODEStateAndDerivative<T> computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper, final T time, final T theta, final T thetaH, final T oneMinusThetaH) throws MaxCountExceededException { final T one = time.getField().getOne(); final T eta = one.subtract(theta); final T twoTheta = theta.multiply(2); final T theta2 = theta.multiply(theta); final T dot1 = one.subtract(twoTheta); final T dot2 = theta.multiply(theta.multiply(-3).add(2)); final T dot3 = twoTheta.multiply(theta.multiply(twoTheta.subtract(3)).add(1)); final T dot4 = theta2.multiply(theta.multiply(theta.multiply(5).subtract(8)).add(3)); final T dot5 = theta2.multiply(theta.multiply(theta.multiply(theta.multiply(-6).add(15)).subtract(12)).add(3)); final T dot6 = theta2.multiply(theta.multiply(theta.multiply(theta.multiply(theta.multiply(-7).add(18)).subtract(15)).add(4))); final T[] interpolatedState; final T[] interpolatedDerivatives; if (getGlobalPreviousState() != null && theta.getReal() <= 0.5) { final T f0 = thetaH; final T f1 = f0.multiply(eta); final T f2 = f1.multiply(theta); final T f3 = f2.multiply(eta); final T f4 = f3.multiply(theta); final T f5 = f4.multiply(eta); final T f6 = f5.multiply(theta); final T[] p = MathArrays.buildArray(time.getField(), 16); final T[] q = MathArrays.buildArray(time.getField(), 16); for (int i = 0; i < p.length; ++i) { p[i] = f0.multiply(d[0][i]). add(f1.multiply(d[1][i])). add(f2.multiply(d[2][i])). add(f3.multiply(d[3][i])). add(f4.multiply(d[4][i])). add(f5.multiply(d[5][i])). add(f6.multiply(d[6][i])); q[i] = d[0][i]. add(dot1.multiply(d[1][i])). add(dot2.multiply(d[2][i])). add(dot3.multiply(d[3][i])). add(dot4.multiply(d[4][i])). add(dot5.multiply(d[5][i])). add(dot6.multiply(d[6][i])); } interpolatedState = previousStateLinearCombination(p[0], p[1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); interpolatedDerivatives = derivativeLinearCombination(q[0], q[1], q[ 2], q[ 3], q[ 4], q[ 5], q[ 6], q[ 7], q[8], q[9], q[10], q[11], q[12], q[13], q[14], q[15]); } else { final T f0 = oneMinusThetaH.negate(); final T f1 = f0.multiply(theta).negate(); final T f2 = f1.multiply(theta); final T f3 = f2.multiply(eta); final T f4 = f3.multiply(theta); final T f5 = f4.multiply(eta); final T f6 = f5.multiply(theta); final T[] p = MathArrays.buildArray(time.getField(), 16); final T[] q = MathArrays.buildArray(time.getField(), 16); for (int i = 0; i < p.length; ++i) { p[i] = f0.multiply(d[0][i]). add(f1.multiply(d[1][i])). add(f2.multiply(d[2][i])). add(f3.multiply(d[3][i])). add(f4.multiply(d[4][i])). add(f5.multiply(d[5][i])). add(f6.multiply(d[6][i])); q[i] = d[0][i]. add(dot1.multiply(d[1][i])). add(dot2.multiply(d[2][i])). add(dot3.multiply(d[3][i])). add(dot4.multiply(d[4][i])). add(dot5.multiply(d[5][i])). add(dot6.multiply(d[6][i])); } interpolatedState = currentStateLinearCombination(p[0], p[1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); interpolatedDerivatives = derivativeLinearCombination(q[0], q[1], q[ 2], q[ 3], q[ 4], q[ 5], q[ 6], q[ 7], q[8], q[9], q[10], q[11], q[12], q[13], q[14], q[15]); } return new FieldODEStateAndDerivative<T>(time, interpolatedState, interpolatedDerivatives); } }