/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.ode.nonstiff; import org.apache.commons.math3.Field; import org.apache.commons.math3.RealFieldElement; import org.apache.commons.math3.ode.FieldEquationsMapper; import org.apache.commons.math3.ode.FieldODEStateAndDerivative; import org.apache.commons.math3.util.MathArrays; import org.apache.commons.math3.util.MathUtils; /** * This class implements the 5(4) Dormand-Prince integrator for Ordinary * Differential Equations. * <p>This integrator is an embedded Runge-Kutta integrator * of order 5(4) used in local extrapolation mode (i.e. the solution * is computed using the high order formula) with stepsize control * (and automatic step initialization) and continuous output. This * method uses 7 functions evaluations per step. However, since this * is an <i>fsal</i>, the last evaluation of one step is the same as * the first evaluation of the next step and hence can be avoided. So * the cost is really 6 functions evaluations per step.</p> * * <p>This method has been published (whithout the continuous output * that was added by Shampine in 1986) in the following article : * <pre> * A family of embedded Runge-Kutta formulae * J. R. Dormand and P. J. Prince * Journal of Computational and Applied Mathematics * volume 6, no 1, 1980, pp. 19-26 * </pre></p> * * @param <T> the type of the field elements * @since 3.6 */ public class DormandPrince54FieldIntegrator<T extends RealFieldElement<T>> extends EmbeddedRungeKuttaFieldIntegrator<T> { /** Integrator method name. */ private static final String METHOD_NAME = "Dormand-Prince 5(4)"; /** Error array, element 1. */ private final T e1; // element 2 is zero, so it is neither stored nor used /** Error array, element 3. */ private final T e3; /** Error array, element 4. */ private final T e4; /** Error array, element 5. */ private final T e5; /** Error array, element 6. */ private final T e6; /** Error array, element 7. */ private final T e7; /** Simple constructor. * Build a fifth order Dormand-Prince integrator with the given step bounds * @param field field to which the time and state vector elements belong * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error */ public DormandPrince54FieldIntegrator(final Field<T> field, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) { super(field, METHOD_NAME, 6, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); e1 = fraction( 71, 57600); e3 = fraction( -71, 16695); e4 = fraction( 71, 1920); e5 = fraction(-17253, 339200); e6 = fraction( 22, 525); e7 = fraction( -1, 40); } /** Simple constructor. * Build a fifth order Dormand-Prince integrator with the given step bounds * @param field field to which the time and state vector elements belong * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error */ public DormandPrince54FieldIntegrator(final Field<T> field, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) { super(field, METHOD_NAME, 6, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); e1 = fraction( 71, 57600); e3 = fraction( -71, 16695); e4 = fraction( 71, 1920); e5 = fraction(-17253, 339200); e6 = fraction( 22, 525); e7 = fraction( -1, 40); } /** {@inheritDoc} */ public T[] getC() { final T[] c = MathArrays.buildArray(getField(), 6); c[0] = fraction(1, 5); c[1] = fraction(3, 10); c[2] = fraction(4, 5); c[3] = fraction(8, 9); c[4] = getField().getOne(); c[5] = getField().getOne(); return c; } /** {@inheritDoc} */ public T[][] getA() { final T[][] a = MathArrays.buildArray(getField(), 6, -1); for (int i = 0; i < a.length; ++i) { a[i] = MathArrays.buildArray(getField(), i + 1); } a[0][0] = fraction( 1, 5); a[1][0] = fraction( 3, 40); a[1][1] = fraction( 9, 40); a[2][0] = fraction( 44, 45); a[2][1] = fraction( -56, 15); a[2][2] = fraction( 32, 9); a[3][0] = fraction( 19372, 6561); a[3][1] = fraction(-25360, 2187); a[3][2] = fraction( 64448, 6561); a[3][3] = fraction( -212, 729); a[4][0] = fraction( 9017, 3168); a[4][1] = fraction( -355, 33); a[4][2] = fraction( 46732, 5247); a[4][3] = fraction( 49, 176); a[4][4] = fraction( -5103, 18656); a[5][0] = fraction( 35, 384); a[5][1] = getField().getZero(); a[5][2] = fraction( 500, 1113); a[5][3] = fraction( 125, 192); a[5][4] = fraction( -2187, 6784); a[5][5] = fraction( 11, 84); return a; } /** {@inheritDoc} */ public T[] getB() { final T[] b = MathArrays.buildArray(getField(), 7); b[0] = fraction( 35, 384); b[1] = getField().getZero(); b[2] = fraction( 500, 1113); b[3] = fraction( 125, 192); b[4] = fraction(-2187, 6784); b[5] = fraction( 11, 84); b[6] = getField().getZero(); return b; } /** {@inheritDoc} */ @Override protected DormandPrince54FieldStepInterpolator<T> createInterpolator(final boolean forward, T[][] yDotK, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldEquationsMapper<T> mapper) { return new DormandPrince54FieldStepInterpolator<T>(getField(), forward, yDotK, globalPreviousState, globalCurrentState, globalPreviousState, globalCurrentState, mapper); } /** {@inheritDoc} */ @Override public int getOrder() { return 5; } /** {@inheritDoc} */ @Override protected T estimateError(final T[][] yDotK, final T[] y0, final T[] y1, final T h) { T error = getField().getZero(); for (int j = 0; j < mainSetDimension; ++j) { final T errSum = yDotK[0][j].multiply(e1). add(yDotK[2][j].multiply(e3)). add(yDotK[3][j].multiply(e4)). add(yDotK[4][j].multiply(e5)). add(yDotK[5][j].multiply(e6)). add(yDotK[6][j].multiply(e7)); final T yScale = MathUtils.max(y0[j].abs(), y1[j].abs()); final T tol = (vecAbsoluteTolerance == null) ? yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) : yScale.multiply(vecRelativeTolerance[j]).add(vecAbsoluteTolerance[j]); final T ratio = h.multiply(errSum).divide(tol); error = error.add(ratio.multiply(ratio)); } return error.divide(mainSetDimension).sqrt(); } }