/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.ode.nonstiff; import org.apache.commons.math3.Field; import org.apache.commons.math3.RealFieldElement; import org.apache.commons.math3.ode.FieldEquationsMapper; import org.apache.commons.math3.ode.FieldODEStateAndDerivative; import org.apache.commons.math3.util.MathArrays; /** * This class implements a simple Euler integrator for Ordinary * Differential Equations. * * <p>The Euler algorithm is the simplest one that can be used to * integrate ordinary differential equations. It is a simple inversion * of the forward difference expression : * <code>f'=(f(t+h)-f(t))/h</code> which leads to * <code>f(t+h)=f(t)+hf'</code>. The interpolation scheme used for * dense output is the linear scheme already used for integration.</p> * * <p>This algorithm looks cheap because it needs only one function * evaluation per step. However, as it uses linear estimates, it needs * very small steps to achieve high accuracy, and small steps lead to * numerical errors and instabilities.</p> * * <p>This algorithm is almost never used and has been included in * this package only as a comparison reference for more useful * integrators.</p> * * @see MidpointFieldIntegrator * @see ClassicalRungeKuttaFieldIntegrator * @see GillFieldIntegrator * @see ThreeEighthesFieldIntegrator * @see LutherFieldIntegrator * @param <T> the type of the field elements * @since 3.6 */ public class EulerFieldIntegrator<T extends RealFieldElement<T>> extends RungeKuttaFieldIntegrator<T> { /** Simple constructor. * Build an Euler integrator with the given step. * @param field field to which the time and state vector elements belong * @param step integration step */ public EulerFieldIntegrator(final Field<T> field, final T step) { super(field, "Euler", step); } /** {@inheritDoc} */ public T[] getC() { return MathArrays.buildArray(getField(), 0); } /** {@inheritDoc} */ public T[][] getA() { return MathArrays.buildArray(getField(), 0, 0); } /** {@inheritDoc} */ public T[] getB() { final T[] b = MathArrays.buildArray(getField(), 1); b[0] = getField().getOne(); return b; } /** {@inheritDoc} */ @Override protected EulerFieldStepInterpolator<T> createInterpolator(final boolean forward, T[][] yDotK, final FieldODEStateAndDerivative<T> globalPreviousState, final FieldODEStateAndDerivative<T> globalCurrentState, final FieldEquationsMapper<T> mapper) { return new EulerFieldStepInterpolator<T>(getField(), forward, yDotK, globalPreviousState, globalCurrentState, globalPreviousState, globalCurrentState, mapper); } }