/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.linear; import java.io.Serializable; import java.util.Arrays; import org.apache.commons.math3.Field; import org.apache.commons.math3.FieldElement; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.exception.MathArithmeticException; import org.apache.commons.math3.exception.NotPositiveException; import org.apache.commons.math3.exception.NullArgumentException; import org.apache.commons.math3.exception.NumberIsTooLargeException; import org.apache.commons.math3.exception.NumberIsTooSmallException; import org.apache.commons.math3.exception.OutOfRangeException; import org.apache.commons.math3.exception.ZeroException; import org.apache.commons.math3.exception.util.LocalizedFormats; import org.apache.commons.math3.util.MathArrays; import org.apache.commons.math3.util.MathUtils; /** * This class implements the {@link FieldVector} interface with a {@link FieldElement} array. * @param <T> the type of the field elements * @since 2.0 */ public class ArrayFieldVector<T extends FieldElement<T>> implements FieldVector<T>, Serializable { /** Serializable version identifier. */ private static final long serialVersionUID = 7648186910365927050L; /** Entries of the vector. */ private /*@ spec_public */ T[] data; /** Field to which the elements belong. */ private /*@ spec_public */ final Field<T> field; /** * Build a 0-length vector. * Zero-length vectors may be used to initialize construction of vectors * by data gathering. We start with zero-length and use either the {@link * #ArrayFieldVector(ArrayFieldVector, ArrayFieldVector)} constructor * or one of the {@code append} methods ({@link #add(FieldVector)} or * {@link #append(ArrayFieldVector)}) to gather data into this vector. * * @param field field to which the elements belong */ //@ assignable this.field, this.data; //@ ensures this.field == field && this.data != null; public ArrayFieldVector(final Field<T> field) { this(field, 0); } /** * Construct a vector of zeroes. * * @param field Field to which the elements belong. * @param size Size of the vector. */ //@ assignable \nothing; //@ ensures this.field == field && this.data != null && \fresh(this.data); public ArrayFieldVector(Field<T> field, int size) { this.field = field; this.data = MathArrays.buildArray(field, size); } /** * Construct a vector with preset values. * * @param size Size of the vector. * @param preset All entries will be set with this value. */ public ArrayFieldVector(int size, T preset) { this(preset.getField(), size); Arrays.fill(data, preset); } /** * Construct a vector from an array, copying the input array. * This constructor needs a non-empty {@code d} array to retrieve * the field from its first element. This implies it cannot build * 0 length vectors. To build vectors from any size, one should * use the {@link #ArrayFieldVector(Field, FieldElement[])} constructor. * * @param d Array. * @throws NullArgumentException if {@code d} is {@code null}. * @throws ZeroException if {@code d} is empty. * @see #ArrayFieldVector(Field, FieldElement[]) */ @org.jmlspecs.annotation.Options("-logic=AUFLIRA") @org.jmlspecs.annotation.SkipEsc // FIXME - skipping because real reasoning timesout public ArrayFieldVector(T[] d) throws NullArgumentException, ZeroException { MathUtils.checkNotNull(d); try { field = d[0].getField(); data = d.clone(); } catch (ArrayIndexOutOfBoundsException e) { throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT); } } /** * Construct a vector from an array, copying the input array. * * @param field Field to which the elements belong. * @param d Array. * @throws NullArgumentException if {@code d} is {@code null}. * @see #ArrayFieldVector(FieldElement[]) */ //@ assignable \nothing; //@ ensures this.field == field && this.data != null; @org.jmlspecs.annotation.Options("-logic=AUFLIRA") @org.jmlspecs.annotation.SkipEsc public ArrayFieldVector(Field<T> field, T[] d) throws NullArgumentException { MathUtils.checkNotNull(d); this.field = field; data = d.clone(); } /** * Create a new ArrayFieldVector using the input array as the underlying * data array. * If an array is built specially in order to be embedded in a * ArrayFieldVector and not used directly, the {@code copyArray} may be * set to {@code false}. This will prevent the copying and improve * performance as no new array will be built and no data will be copied. * This constructor needs a non-empty {@code d} array to retrieve * the field from its first element. This implies it cannot build * 0 length vectors. To build vectors from any size, one should * use the {@link #ArrayFieldVector(Field, FieldElement[], boolean)} * constructor. * * @param d Data for the new vector. * @param copyArray If {@code true}, the input array will be copied, * otherwise it will be referenced. * @throws NullArgumentException if {@code d} is {@code null}. * @throws ZeroException if {@code d} is empty. * @see #ArrayFieldVector(FieldElement[]) * @see #ArrayFieldVector(Field, FieldElement[], boolean) */ @org.jmlspecs.annotation.Options("-logic=AUFLIRA") @org.jmlspecs.annotation.SkipEsc public ArrayFieldVector(T[] d, boolean copyArray) throws NullArgumentException, ZeroException { MathUtils.checkNotNull(d); if (d.length == 0) { throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT); } field = d[0].getField(); data = copyArray ? d.clone() : d; } /** * Create a new ArrayFieldVector using the input array as the underlying * data array. * If an array is built specially in order to be embedded in a * ArrayFieldVector and not used directly, the {@code copyArray} may be * set to {@code false}. This will prevent the copying and improve * performance as no new array will be built and no data will be copied. * * @param field Field to which the elements belong. * @param d Data for the new vector. * @param copyArray If {@code true}, the input array will be copied, * otherwise it will be referenced. * @throws NullArgumentException if {@code d} is {@code null}. * @see #ArrayFieldVector(FieldElement[], boolean) */ @org.jmlspecs.annotation.Options("-logic=AUFLIRA") @org.jmlspecs.annotation.SkipEsc public ArrayFieldVector(Field<T> field, T[] d, boolean copyArray) throws NullArgumentException { MathUtils.checkNotNull(d); this.field = field; data = copyArray ? d.clone() : d; } /** * Construct a vector from part of a array. * * @param d Array. * @param pos Position of the first entry. * @param size Number of entries to copy. * @throws NullArgumentException if {@code d} is {@code null}. * @throws NumberIsTooLargeException if the size of {@code d} is less * than {@code pos + size}. */ @org.jmlspecs.annotation.Options("-logic=AUFLIRA") @org.jmlspecs.annotation.SkipEsc public ArrayFieldVector(T[] d, int pos, int size) throws NullArgumentException, NumberIsTooLargeException { MathUtils.checkNotNull(d); if (d.length < pos + size) { throw new NumberIsTooLargeException(pos + size, d.length, true); } field = d[0].getField(); data = MathArrays.buildArray(field, size); System.arraycopy(d, pos, data, 0, size); } /** * Construct a vector from part of a array. * * @param field Field to which the elements belong. * @param d Array. * @param pos Position of the first entry. * @param size Number of entries to copy. * @throws NullArgumentException if {@code d} is {@code null}. * @throws NumberIsTooLargeException if the size of {@code d} is less * than {@code pos + size}. */ @org.jmlspecs.annotation.Options("-logic=AUFLIRA") @org.jmlspecs.annotation.SkipEsc public ArrayFieldVector(Field<T> field, T[] d, int pos, int size) throws NullArgumentException, NumberIsTooLargeException { MathUtils.checkNotNull(d); if (d.length < pos + size) { throw new NumberIsTooLargeException(pos + size, d.length, true); } this.field = field; data = MathArrays.buildArray(field, size); System.arraycopy(d, pos, data, 0, size); } /** * Construct a vector from another vector, using a deep copy. * * @param v Vector to copy. * @throws NullArgumentException if {@code v} is {@code null}. */ //@ skipesc // FIXME - timesout public ArrayFieldVector(FieldVector<T> v) throws NullArgumentException { MathUtils.checkNotNull(v); field = v.getField(); data = MathArrays.buildArray(field, v.getDimension()); /*@ loop_invariant 0 <= i && i <= data.length; @ decreases data.length - i; @*/ for (int i = 0; i < data.length; ++i) { data[i] = v.getEntry(i); } } /** * Construct a vector from another vector, using a deep copy. * * @param v Vector to copy. * @throws NullArgumentException if {@code v} is {@code null}. */ //@ skipesc // FIXME - tiemsout - possibly because of a method call prior to instance fields being set public ArrayFieldVector(ArrayFieldVector<T> v) throws NullArgumentException { MathUtils.checkNotNull(v); field = v.getField(); data = v.data.clone(); } /** * Construct a vector from another vector. * * @param v Vector to copy. * @param deep If {@code true} perform a deep copy, otherwise perform * a shallow copy * @throws NullArgumentException if {@code v} is {@code null}. */ public ArrayFieldVector(ArrayFieldVector<T> v, boolean deep) throws NullArgumentException { MathUtils.checkNotNull(v); field = v.getField(); data = deep ? v.data.clone() : v.data; } /** * Construct a vector by appending one vector to another vector. * * @param v1 First vector (will be put in front of the new vector). * @param v2 Second vector (will be put at back of the new vector). * @throws NullArgumentException if {@code v1} or {@code v2} is * {@code null}. * @deprecated as of 3.2, replaced by {@link #ArrayFieldVector(FieldVector, FieldVector)} */ @Deprecated public ArrayFieldVector(ArrayFieldVector<T> v1, ArrayFieldVector<T> v2) throws NullArgumentException { this((FieldVector<T>) v1, (FieldVector<T>) v2); } /** * Construct a vector by appending one vector to another vector. * * @param v1 First vector (will be put in front of the new vector). * @param v2 Second vector (will be put at back of the new vector). * @throws NullArgumentException if {@code v1} or {@code v2} is * {@code null}. * @since 3.2 */ public ArrayFieldVector(FieldVector<T> v1, FieldVector<T> v2) throws NullArgumentException { MathUtils.checkNotNull(v1); MathUtils.checkNotNull(v2); field = v1.getField(); final T[] v1Data = (v1 instanceof ArrayFieldVector) ? ((ArrayFieldVector<T>) v1).data : v1.toArray(); final T[] v2Data = (v2 instanceof ArrayFieldVector) ? ((ArrayFieldVector<T>) v2).data : v2.toArray(); data = MathArrays.buildArray(field, v1Data.length + v2Data.length); System.arraycopy(v1Data, 0, data, 0, v1Data.length); System.arraycopy(v2Data, 0, data, v1Data.length, v2Data.length); } /** * Construct a vector by appending one vector to another vector. * * @param v1 First vector (will be put in front of the new vector). * @param v2 Second vector (will be put at back of the new vector). * @throws NullArgumentException if {@code v1} or {@code v2} is * {@code null}. * @deprecated as of 3.2, replaced by {@link #ArrayFieldVector(FieldVector, FieldElement[])} */ @Deprecated //@ skipesc // FIXME timesout public ArrayFieldVector(ArrayFieldVector<T> v1, T[] v2) throws NullArgumentException { this((FieldVector<T>) v1, v2); } /** * Construct a vector by appending one vector to another vector. * * @param v1 First vector (will be put in front of the new vector). * @param v2 Second vector (will be put at back of the new vector). * @throws NullArgumentException if {@code v1} or {@code v2} is * {@code null}. * @since 3.2 */ public ArrayFieldVector(FieldVector<T> v1, T[] v2) throws NullArgumentException { MathUtils.checkNotNull(v1); MathUtils.checkNotNull(v2); field = v1.getField(); final T[] v1Data = (v1 instanceof ArrayFieldVector) ? ((ArrayFieldVector<T>) v1).data : v1.toArray(); data = MathArrays.buildArray(field, v1Data.length + v2.length); System.arraycopy(v1Data, 0, data, 0, v1Data.length); System.arraycopy(v2, 0, data, v1Data.length, v2.length); } /** * Construct a vector by appending one vector to another vector. * * @param v1 First vector (will be put in front of the new vector). * @param v2 Second vector (will be put at back of the new vector). * @throws NullArgumentException if {@code v1} or {@code v2} is * {@code null}. * @deprecated as of 3.2, replaced by {@link #ArrayFieldVector(FieldElement[], FieldVector)} */ @Deprecated public ArrayFieldVector(T[] v1, ArrayFieldVector<T> v2) throws NullArgumentException { this(v1, (FieldVector<T>) v2); } /** * Construct a vector by appending one vector to another vector. * * @param v1 First vector (will be put in front of the new vector). * @param v2 Second vector (will be put at back of the new vector). * @throws NullArgumentException if {@code v1} or {@code v2} is * {@code null}. * @since 3.2 */ public ArrayFieldVector(T[] v1, FieldVector<T> v2) throws NullArgumentException { MathUtils.checkNotNull(v1); MathUtils.checkNotNull(v2); field = v2.getField(); final T[] v2Data = (v2 instanceof ArrayFieldVector) ? ((ArrayFieldVector<T>) v2).data : v2.toArray(); data = MathArrays.buildArray(field, v1.length + v2Data.length); System.arraycopy(v1, 0, data, 0, v1.length); System.arraycopy(v2Data, 0, data, v1.length, v2Data.length); } /** * Construct a vector by appending one vector to another vector. * This constructor needs at least one non-empty array to retrieve * the field from its first element. This implies it cannot build * 0 length vectors. To build vectors from any size, one should * use the {@link #ArrayFieldVector(Field, FieldElement[], FieldElement[])} * constructor. * * @param v1 First vector (will be put in front of the new vector). * @param v2 Second vector (will be put at back of the new vector). * @throws NullArgumentException if {@code v1} or {@code v2} is * {@code null}. * @throws ZeroException if both arrays are empty. * @see #ArrayFieldVector(Field, FieldElement[], FieldElement[]) */ public ArrayFieldVector(T[] v1, T[] v2) throws NullArgumentException, ZeroException { MathUtils.checkNotNull(v1); MathUtils.checkNotNull(v2); if (v1.length + v2.length == 0) { throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT); } data = MathArrays.buildArray(v1[0].getField(), v1.length + v2.length); System.arraycopy(v1, 0, data, 0, v1.length); System.arraycopy(v2, 0, data, v1.length, v2.length); field = data[0].getField(); } /** * Construct a vector by appending one vector to another vector. * * @param field Field to which the elements belong. * @param v1 First vector (will be put in front of the new vector). * @param v2 Second vector (will be put at back of the new vector). * @throws NullArgumentException if {@code v1} or {@code v2} is * {@code null}. * @throws ZeroException if both arrays are empty. * @see #ArrayFieldVector(FieldElement[], FieldElement[]) */ public ArrayFieldVector(Field<T> field, T[] v1, T[] v2) throws NullArgumentException, ZeroException { MathUtils.checkNotNull(v1); MathUtils.checkNotNull(v2); if (v1.length + v2.length == 0) { throw new ZeroException(LocalizedFormats.VECTOR_MUST_HAVE_AT_LEAST_ONE_ELEMENT); } data = MathArrays.buildArray(field, v1.length + v2.length); System.arraycopy(v1, 0, data, 0, v1.length); System.arraycopy(v2, 0, data, v1.length, v2.length); this.field = field; } /** {@inheritDoc} */ public Field<T> getField() { return field; } /** {@inheritDoc} */ public FieldVector<T> copy() { return new ArrayFieldVector<T>(this, true); } /** {@inheritDoc} */ public FieldVector<T> add(FieldVector<T> v) throws DimensionMismatchException { try { return add((ArrayFieldVector<T>) v); } catch (ClassCastException cce) { checkVectorDimensions(v); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].add(v.getEntry(i)); } return new ArrayFieldVector<T>(field, out, false); } } /** * Compute the sum of {@code this} and {@code v}. * @param v vector to be added * @return {@code this + v} * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} */ public ArrayFieldVector<T> add(ArrayFieldVector<T> v) throws DimensionMismatchException { checkVectorDimensions(v.data.length); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].add(v.data[i]); } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> subtract(FieldVector<T> v) throws DimensionMismatchException { try { return subtract((ArrayFieldVector<T>) v); } catch (ClassCastException cce) { checkVectorDimensions(v); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].subtract(v.getEntry(i)); } return new ArrayFieldVector<T>(field, out, false); } } /** * Compute {@code this} minus {@code v}. * @param v vector to be subtracted * @return {@code this - v} * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} */ public ArrayFieldVector<T> subtract(ArrayFieldVector<T> v) throws DimensionMismatchException { checkVectorDimensions(v.data.length); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].subtract(v.data[i]); } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> mapAdd(T d) throws NullArgumentException { T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].add(d); } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> mapAddToSelf(T d) throws NullArgumentException { for (int i = 0; i < data.length; i++) { data[i] = data[i].add(d); } return this; } /** {@inheritDoc} */ public FieldVector<T> mapSubtract(T d) throws NullArgumentException { T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].subtract(d); } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> mapSubtractToSelf(T d) throws NullArgumentException { for (int i = 0; i < data.length; i++) { data[i] = data[i].subtract(d); } return this; } /** {@inheritDoc} */ public FieldVector<T> mapMultiply(T d) throws NullArgumentException { T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].multiply(d); } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> mapMultiplyToSelf(T d) throws NullArgumentException { for (int i = 0; i < data.length; i++) { data[i] = data[i].multiply(d); } return this; } /** {@inheritDoc} */ public FieldVector<T> mapDivide(T d) throws NullArgumentException, MathArithmeticException { MathUtils.checkNotNull(d); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].divide(d); } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> mapDivideToSelf(T d) throws NullArgumentException, MathArithmeticException { MathUtils.checkNotNull(d); for (int i = 0; i < data.length; i++) { data[i] = data[i].divide(d); } return this; } /** {@inheritDoc} */ public FieldVector<T> mapInv() throws MathArithmeticException { T[] out = MathArrays.buildArray(field, data.length); final T one = field.getOne(); for (int i = 0; i < data.length; i++) { try { out[i] = one.divide(data[i]); } catch (final MathArithmeticException e) { throw new MathArithmeticException(LocalizedFormats.INDEX, i); } } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> mapInvToSelf() throws MathArithmeticException { final T one = field.getOne(); for (int i = 0; i < data.length; i++) { try { data[i] = one.divide(data[i]); } catch (final MathArithmeticException e) { throw new MathArithmeticException(LocalizedFormats.INDEX, i); } } return this; } /** {@inheritDoc} */ public FieldVector<T> ebeMultiply(FieldVector<T> v) throws DimensionMismatchException { try { return ebeMultiply((ArrayFieldVector<T>) v); } catch (ClassCastException cce) { checkVectorDimensions(v); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].multiply(v.getEntry(i)); } return new ArrayFieldVector<T>(field, out, false); } } /** * Element-by-element multiplication. * @param v vector by which instance elements must be multiplied * @return a vector containing {@code this[i] * v[i]} for all {@code i} * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} */ public ArrayFieldVector<T> ebeMultiply(ArrayFieldVector<T> v) throws DimensionMismatchException { checkVectorDimensions(v.data.length); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { out[i] = data[i].multiply(v.data[i]); } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> ebeDivide(FieldVector<T> v) throws DimensionMismatchException, MathArithmeticException { try { return ebeDivide((ArrayFieldVector<T>) v); } catch (ClassCastException cce) { checkVectorDimensions(v); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { try { out[i] = data[i].divide(v.getEntry(i)); } catch (final MathArithmeticException e) { throw new MathArithmeticException(LocalizedFormats.INDEX, i); } } return new ArrayFieldVector<T>(field, out, false); } } /** * Element-by-element division. * @param v vector by which instance elements must be divided * @return a vector containing {@code this[i] / v[i]} for all {@code i} * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} * @throws MathArithmeticException if one entry of {@code v} is zero. */ public ArrayFieldVector<T> ebeDivide(ArrayFieldVector<T> v) throws DimensionMismatchException, MathArithmeticException { checkVectorDimensions(v.data.length); T[] out = MathArrays.buildArray(field, data.length); for (int i = 0; i < data.length; i++) { try { out[i] = data[i].divide(v.data[i]); } catch (final MathArithmeticException e) { throw new MathArithmeticException(LocalizedFormats.INDEX, i); } } return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public T[] getData() { return data.clone(); } /** * Returns a reference to the underlying data array. * <p>Does not make a fresh copy of the underlying data.</p> * @return array of entries */ public T[] getDataRef() { return data; } /** {@inheritDoc} */ public T dotProduct(FieldVector<T> v) throws DimensionMismatchException { try { return dotProduct((ArrayFieldVector<T>) v); } catch (ClassCastException cce) { checkVectorDimensions(v); T dot = field.getZero(); for (int i = 0; i < data.length; i++) { dot = dot.add(data[i].multiply(v.getEntry(i))); } return dot; } } /** * Compute the dot product. * @param v vector with which dot product should be computed * @return the scalar dot product of {@code this} and {@code v} * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} */ public T dotProduct(ArrayFieldVector<T> v) throws DimensionMismatchException { checkVectorDimensions(v.data.length); T dot = field.getZero(); for (int i = 0; i < data.length; i++) { dot = dot.add(data[i].multiply(v.data[i])); } return dot; } /** {@inheritDoc} */ public FieldVector<T> projection(FieldVector<T> v) throws DimensionMismatchException, MathArithmeticException { return v.mapMultiply(dotProduct(v).divide(v.dotProduct(v))); } /** Find the orthogonal projection of this vector onto another vector. * @param v vector onto which {@code this} must be projected * @return projection of {@code this} onto {@code v} * @throws DimensionMismatchException if {@code v} is not the same size as * {@code this} * @throws MathArithmeticException if {@code v} is the null vector. */ public ArrayFieldVector<T> projection(ArrayFieldVector<T> v) throws DimensionMismatchException, MathArithmeticException { return (ArrayFieldVector<T>) v.mapMultiply(dotProduct(v).divide(v.dotProduct(v))); } /** {@inheritDoc} */ public FieldMatrix<T> outerProduct(FieldVector<T> v) { try { return outerProduct((ArrayFieldVector<T>) v); } catch (ClassCastException cce) { final int m = data.length; final int n = v.getDimension(); final FieldMatrix<T> out = new Array2DRowFieldMatrix<T>(field, m, n); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { out.setEntry(i, j, data[i].multiply(v.getEntry(j))); } } return out; } } /** * Compute the outer product. * @param v vector with which outer product should be computed * @return the matrix outer product between instance and v */ public FieldMatrix<T> outerProduct(ArrayFieldVector<T> v) { final int m = data.length; final int n = v.data.length; final FieldMatrix<T> out = new Array2DRowFieldMatrix<T>(field, m, n); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { out.setEntry(i, j, data[i].multiply(v.data[j])); } } return out; } /** {@inheritDoc} */ public T getEntry(int index) { return data[index]; } /** {@inheritDoc} */ public int getDimension() { return data.length; } /** {@inheritDoc} */ public FieldVector<T> append(FieldVector<T> v) { try { return append((ArrayFieldVector<T>) v); } catch (ClassCastException cce) { return new ArrayFieldVector<T>(this,new ArrayFieldVector<T>(v)); } } /** * Construct a vector by appending a vector to this vector. * @param v vector to append to this one. * @return a new vector */ public ArrayFieldVector<T> append(ArrayFieldVector<T> v) { return new ArrayFieldVector<T>(this, v); } /** {@inheritDoc} */ public FieldVector<T> append(T in) { final T[] out = MathArrays.buildArray(field, data.length + 1); System.arraycopy(data, 0, out, 0, data.length); out[data.length] = in; return new ArrayFieldVector<T>(field, out, false); } /** {@inheritDoc} */ public FieldVector<T> getSubVector(int index, int n) throws OutOfRangeException, NotPositiveException { if (n < 0) { throw new NotPositiveException(LocalizedFormats.NUMBER_OF_ELEMENTS_SHOULD_BE_POSITIVE, n); } ArrayFieldVector<T> out = new ArrayFieldVector<T>(field, n); try { System.arraycopy(data, index, out.data, 0, n); } catch (IndexOutOfBoundsException e) { checkIndex(index); checkIndex(index + n - 1); } return out; } /** {@inheritDoc} */ public void setEntry(int index, T value) { try { data[index] = value; } catch (IndexOutOfBoundsException e) { checkIndex(index); } } /** {@inheritDoc} */ public void setSubVector(int index, FieldVector<T> v) throws OutOfRangeException { try { try { set(index, (ArrayFieldVector<T>) v); } catch (ClassCastException cce) { for (int i = index; i < index + v.getDimension(); ++i) { data[i] = v.getEntry(i-index); } } } catch (IndexOutOfBoundsException e) { checkIndex(index); checkIndex(index + v.getDimension() - 1); } } /** * Set a set of consecutive elements. * * @param index index of first element to be set. * @param v vector containing the values to set. * @throws OutOfRangeException if the index is invalid. */ public void set(int index, ArrayFieldVector<T> v) throws OutOfRangeException { try { System.arraycopy(v.data, 0, data, index, v.data.length); } catch (IndexOutOfBoundsException e) { checkIndex(index); checkIndex(index + v.data.length - 1); } } /** {@inheritDoc} */ public void set(T value) { Arrays.fill(data, value); } /** {@inheritDoc} */ public T[] toArray(){ return data.clone(); } /** * Check if instance and specified vectors have the same dimension. * @param v vector to compare instance with * @exception DimensionMismatchException if the vectors do not * have the same dimensions */ protected void checkVectorDimensions(FieldVector<T> v) throws DimensionMismatchException { checkVectorDimensions(v.getDimension()); } /** * Check if instance dimension is equal to some expected value. * * @param n Expected dimension. * @throws DimensionMismatchException if the dimension is not equal to the * size of {@code this} vector. */ protected void checkVectorDimensions(int n) throws DimensionMismatchException { if (data.length != n) { throw new DimensionMismatchException(data.length, n); } } /** * Visits (but does not alter) all entries of this vector in default order * (increasing index). * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link FieldVectorPreservingVisitor#end()} * at the end of the walk * @since 3.3 */ public T walkInDefaultOrder(final FieldVectorPreservingVisitor<T> visitor) { final int dim = getDimension(); visitor.start(dim, 0, dim - 1); for (int i = 0; i < dim; i++) { visitor.visit(i, getEntry(i)); } return visitor.end(); } /** * Visits (but does not alter) some entries of this vector in default order * (increasing index). * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link FieldVectorPreservingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.3 */ public T walkInDefaultOrder(final FieldVectorPreservingVisitor<T> visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { checkIndices(start, end); visitor.start(getDimension(), start, end); for (int i = start; i <= end; i++) { visitor.visit(i, getEntry(i)); } return visitor.end(); } /** * Visits (but does not alter) all entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link FieldVectorPreservingVisitor#end()} * at the end of the walk * @since 3.3 */ public T walkInOptimizedOrder(final FieldVectorPreservingVisitor<T> visitor) { return walkInDefaultOrder(visitor); } /** * Visits (but does not alter) some entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link FieldVectorPreservingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.3 */ public T walkInOptimizedOrder(final FieldVectorPreservingVisitor<T> visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { return walkInDefaultOrder(visitor, start, end); } /** * Visits (and possibly alters) all entries of this vector in default order * (increasing index). * * @param visitor the visitor to be used to process and modify the entries * of this vector * @return the value returned by {@link FieldVectorChangingVisitor#end()} * at the end of the walk * @since 3.3 */ public T walkInDefaultOrder(final FieldVectorChangingVisitor<T> visitor) { final int dim = getDimension(); visitor.start(dim, 0, dim - 1); for (int i = 0; i < dim; i++) { setEntry(i, visitor.visit(i, getEntry(i))); } return visitor.end(); } /** * Visits (and possibly alters) some entries of this vector in default order * (increasing index). * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link FieldVectorChangingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.3 */ public T walkInDefaultOrder(final FieldVectorChangingVisitor<T> visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { checkIndices(start, end); visitor.start(getDimension(), start, end); for (int i = start; i <= end; i++) { setEntry(i, visitor.visit(i, getEntry(i))); } return visitor.end(); } /** * Visits (and possibly alters) all entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor the visitor to be used to process the entries of this * vector * @return the value returned by {@link FieldVectorChangingVisitor#end()} * at the end of the walk * @since 3.3 */ public T walkInOptimizedOrder(final FieldVectorChangingVisitor<T> visitor) { return walkInDefaultOrder(visitor); } /** * Visits (and possibly change) some entries of this vector in optimized * order. The order in which the entries are visited is selected so as to * lead to the most efficient implementation; it might depend on the * concrete implementation of this abstract class. * * @param visitor visitor to be used to process the entries of this vector * @param start the index of the first entry to be visited * @param end the index of the last entry to be visited (inclusive) * @return the value returned by {@link FieldVectorChangingVisitor#end()} * at the end of the walk * @throws NumberIsTooSmallException if {@code end < start}. * @throws OutOfRangeException if the indices are not valid. * @since 3.3 */ public T walkInOptimizedOrder(final FieldVectorChangingVisitor<T> visitor, final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { return walkInDefaultOrder(visitor, start, end); } /** * Test for the equality of two vectors. * * @param other Object to test for equality. * @return {@code true} if two vector objects are equal, {@code false} * otherwise. */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other == null) { return false; } try { @SuppressWarnings("unchecked") // May fail, but we ignore ClassCastException FieldVector<T> rhs = (FieldVector<T>) other; if (data.length != rhs.getDimension()) { return false; } for (int i = 0; i < data.length; ++i) { if (!data[i].equals(rhs.getEntry(i))) { return false; } } return true; } catch (ClassCastException ex) { // ignore exception return false; } } /** * Get a hashCode for the real vector. * <p>All NaN values have the same hash code.</p> * @return a hash code value for this object */ @Override public int hashCode() { int h = 3542; for (final T a : data) { h ^= a.hashCode(); } return h; } /** * Check if an index is valid. * * @param index Index to check. * @exception OutOfRangeException if the index is not valid. */ private void checkIndex(final int index) throws OutOfRangeException { if (index < 0 || index >= getDimension()) { throw new OutOfRangeException(LocalizedFormats.INDEX, index, 0, getDimension() - 1); } } /** * Checks that the indices of a subvector are valid. * * @param start the index of the first entry of the subvector * @param end the index of the last entry of the subvector (inclusive) * @throws OutOfRangeException if {@code start} of {@code end} are not valid * @throws NumberIsTooSmallException if {@code end < start} * @since 3.3 */ private void checkIndices(final int start, final int end) throws NumberIsTooSmallException, OutOfRangeException { final int dim = getDimension(); if ((start < 0) || (start >= dim)) { throw new OutOfRangeException(LocalizedFormats.INDEX, start, 0, dim - 1); } if ((end < 0) || (end >= dim)) { throw new OutOfRangeException(LocalizedFormats.INDEX, end, 0, dim - 1); } if (end < start) { throw new NumberIsTooSmallException(LocalizedFormats.INITIAL_ROW_AFTER_FINAL_ROW, end, start, false); } } }