/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.analysis.integration.gauss; import org.apache.commons.math3.exception.DimensionMismatchException; import org.apache.commons.math3.util.Pair; import org.apache.commons.math3.util.FastMath; /** * Factory that creates a * <a href="http://en.wikipedia.org/wiki/Gauss-Hermite_quadrature"> * Gauss-type quadrature rule using Hermite polynomials</a> * of the first kind. * Such a quadrature rule allows the calculation of improper integrals * of a function * <p> * \(f(x) e^{-x^2}\) * </p><p> * Recurrence relation and weights computation follow * <a href="http://en.wikipedia.org/wiki/Abramowitz_and_Stegun"> * Abramowitz and Stegun, 1964</a>. * </p><p> * The coefficients of the standard Hermite polynomials grow very rapidly. * In order to avoid overflows, each Hermite polynomial is normalized with * respect to the underlying scalar product. * The initial interval for the application of the bisection method is * based on the roots of the previous Hermite polynomial (interlacing). * Upper and lower bounds of these roots are provided by </p> * <blockquote> * I. Krasikov, * <em>Nonnegative quadratic forms and bounds on orthogonal polynomials</em>, * Journal of Approximation theory <b>111</b>, 31-49 * </blockquote> * * @since 3.3 */ public class HermiteRuleFactory extends BaseRuleFactory<Double> { /** π<sup>1/2</sup> */ private static final double SQRT_PI = 1.77245385090551602729; /** π<sup>-1/4</sup> */ private static final double H0 = 7.5112554446494248286e-1; /** π<sup>-1/4</sup> √2 */ private static final double H1 = 1.0622519320271969145; /** {@inheritDoc} */ @Override protected Pair<Double[], Double[]> computeRule(int numberOfPoints) throws DimensionMismatchException { if (numberOfPoints == 1) { // Break recursion. return new Pair<Double[], Double[]>(new Double[] { 0d }, new Double[] { SQRT_PI }); } // Get previous rule. // If it has not been computed yet it will trigger a recursive call // to this method. final int lastNumPoints = numberOfPoints - 1; final Double[] previousPoints = getRuleInternal(lastNumPoints).getFirst(); // Compute next rule. final Double[] points = new Double[numberOfPoints]; final Double[] weights = new Double[numberOfPoints]; final double sqrtTwoTimesLastNumPoints = FastMath.sqrt(2 * lastNumPoints); final double sqrtTwoTimesNumPoints = FastMath.sqrt(2 * numberOfPoints); // Find i-th root of H[n+1] by bracketing. final int iMax = numberOfPoints / 2; for (int i = 0; i < iMax; i++) { // Lower-bound of the interval. double a = (i == 0) ? -sqrtTwoTimesLastNumPoints : previousPoints[i - 1].doubleValue(); // Upper-bound of the interval. double b = (iMax == 1) ? -0.5 : previousPoints[i].doubleValue(); // H[j-1](a) double hma = H0; // H[j](a) double ha = H1 * a; // H[j-1](b) double hmb = H0; // H[j](b) double hb = H1 * b; for (int j = 1; j < numberOfPoints; j++) { // Compute H[j+1](a) and H[j+1](b) final double jp1 = j + 1; final double s = FastMath.sqrt(2 / jp1); final double sm = FastMath.sqrt(j / jp1); final double hpa = s * a * ha - sm * hma; final double hpb = s * b * hb - sm * hmb; hma = ha; ha = hpa; hmb = hb; hb = hpb; } // Now ha = H[n+1](a), and hma = H[n](a) (same holds for b). // Middle of the interval. double c = 0.5 * (a + b); // P[j-1](c) double hmc = H0; // P[j](c) double hc = H1 * c; boolean done = false; while (!done) { done = b - a <= Math.ulp(c); hmc = H0; hc = H1 * c; for (int j = 1; j < numberOfPoints; j++) { // Compute H[j+1](c) final double jp1 = j + 1; final double s = FastMath.sqrt(2 / jp1); final double sm = FastMath.sqrt(j / jp1); final double hpc = s * c * hc - sm * hmc; hmc = hc; hc = hpc; } // Now h = H[n+1](c) and hm = H[n](c). if (!done) { if (ha * hc < 0) { b = c; hmb = hmc; hb = hc; } else { a = c; hma = hmc; ha = hc; } c = 0.5 * (a + b); } } final double d = sqrtTwoTimesNumPoints * hmc; final double w = 2 / (d * d); points[i] = c; weights[i] = w; final int idx = lastNumPoints - i; points[idx] = -c; weights[idx] = w; } // If "numberOfPoints" is odd, 0 is a root. // Note: as written, the test for oddness will work for negative // integers too (although it is not necessary here), preventing // a FindBugs warning. if (numberOfPoints % 2 != 0) { double hm = H0; for (int j = 1; j < numberOfPoints; j += 2) { final double jp1 = j + 1; hm = -FastMath.sqrt(j / jp1) * hm; } final double d = sqrtTwoTimesNumPoints * hm; final double w = 2 / (d * d); points[iMax] = 0d; weights[iMax] = w; } return new Pair<Double[], Double[]>(points, weights); } }