// // Nenya library - tools for developing networked games // Copyright (C) 2002-2012 Three Rings Design, Inc., All Rights Reserved // https://github.com/threerings/nenya // // This library is free software; you can redistribute it and/or modify it // under the terms of the GNU Lesser General Public License as published // by the Free Software Foundation; either version 2.1 of the License, or // (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA package com.threerings.media.util; import java.awt.Point; /** * Provides miscellaneous useful utility routines for mathematical calculations. */ public class MathUtil { /** * Bounds the supplied value within the specified range. * * @return low if {@code value < low}, high if {@code value > high} and value otherwise. */ public static int bound (int low, int value, int high) { return Math.min(high, Math.max(low, value)); } /** * Return the squared distance between the given points. */ public static int distanceSq (int x0, int y0, int x1, int y1) { return ((x1 - x0) * (x1 - x0)) + ((y1 - y0) * (y1 - y0)); } /** * Return the distance between the given points. */ public static float distance (int x0, int y0, int x1, int y1) { return (float)Math.sqrt(((x1 - x0) * (x1 - x0)) + ((y1 - y0) * (y1 - y0))); } /** * Return the distance between the given points. */ public static float distance (Point source, Point dest) { return MathUtil.distance(source.x, source.y, dest.x, dest.y); } /** * Return a string representation of the given line. */ public static String lineToString (int x0, int y0, int x1, int y1) { return "(" + x0 + ", " + y0 + ") -> (" + x1 + ", " + y1 + ")"; } /** * Return a string representation of the given line. */ public static String lineToString (Point p1, Point p2) { return lineToString(p1.x, p1.y, p2.x, p2.y); } /** * Returns the approximate circumference of the ellipse defined by the specified minor and * major axes. The formula used (due to Ramanujan, via a paper of his entitled "Modular * Equations and Approximations to Pi"), is <code>Pi(3a + 3b - sqrt[(a+3b)(b+3a)])</code>. */ public static double ellipseCircum (double a, double b) { return Math.PI * (3*a + 3*b - Math.sqrt((a + 3*b) * (b + 3*a))); } /** * Returns positive 1 if the sign of the argument is positive, or -1 if the sign of the * argument is negative. */ public static int sign (int value) { return (value < 0) ? -1 : 1; } /** * Computes the floored division <code>dividend/divisor</code> which * is useful when dividing potentially negative numbers into bins. * * <p> For example, the following numbers floorDiv 10 are: * <pre> * -15 -10 -8 -2 0 2 8 10 15 * -2 -1 -1 -1 0 0 0 1 1 * </pre> */ public static int floorDiv (int dividend, int divisor) { return ((dividend >= 0) == (divisor >= 0)) ? dividend / divisor : (divisor >= 0 ? (dividend - divisor + 1) / divisor : (dividend - divisor - 1) / divisor); } /** * Computes the standard deviation of the supplied values. * * @return an array of three values: the mean, variance and standard deviation, in that order. */ public static float[] stddev (int[] values, int start, int length) { // first we need the mean float mean = 0f; for (int ii = start, end = start + length; ii < end; ii++) { mean += values[ii]; } mean /= length; // next we compute the variance float variance = 0f; for (int ii = start, end = start + length; ii < end; ii++) { float value = values[ii] - mean; variance += value * value; } variance /= (length - 1); // the standard deviation is the square root of the variance return new float[] { mean, variance, (float)Math.sqrt(variance) }; } /** * Computes (N choose K), the number of ways to select K different elements from a set of size * N. */ public static int choose (int n, int k) { // Base case: One way to select or not select the whole set if (k <= 0 || k >= n) { return 1; } // Recurse using pascal's triangle return (choose(n-1, k-1) + choose(n-1, k)); } }