package dr.math.distributions;
import dr.math.Poisson;
import dr.math.UnivariateFunction;
import org.apache.commons.math.MathException;
/**
* @author Alexei Drummond
* @version $Id$
*/
public class PoissonDistribution implements Distribution {
org.apache.commons.math.distribution.PoissonDistribution distribution;
public PoissonDistribution(double mean) {
distribution = new org.apache.commons.math.distribution.PoissonDistributionImpl(mean);
}
public double pdf(double x) {
return distribution.probability(x);
}
public double logPdf(double x) {
double pdf = distribution.probability(x);
if (pdf == 0 || Double.isNaN(pdf)) { // bad estimate
final double mean = mean();
return x * Math.log(mean) - Poisson.gammln(x + 1) - mean;
}
return Math.log(pdf);
}
public double cdf(double x) {
try {
return distribution.cumulativeProbability(x);
} catch (MathException e) {
throw new RuntimeException(e);
}
}
public double quantile(double y) {
try {
return distribution.inverseCumulativeProbability(y);
} catch (MathException e) {
throw new RuntimeException(e);
}
}
public double mean() {
return distribution.getMean();
}
public double variance() {
return distribution.getMean();
}
public UnivariateFunction getProbabilityDensityFunction() {
throw new RuntimeException();
}
public double truncatedMean(int max) {
double CDF = 0;
double mean = 0;
for(int i=0; i<=max; i++) {
double p = distribution.probability(i);
mean += i*p;
CDF += p;
}
return mean / CDF;
}
}