package dr.inference.distribution;
import dr.math.distributions.Distribution;
import dr.inference.model.Parameter;
/**
* @author Chieh-Hsi Wu
*/
public class ModelSpecificPseudoPriorLikelihood extends DistributionLikelihood{
private int[] models;
protected Distribution prior;
protected Distribution pseudoPrior;
private Parameter modelIndicator;
public ModelSpecificPseudoPriorLikelihood(
Distribution prior,
Distribution pseudoPrior,
Parameter modelIndicator,
int[] models){
super(prior);
this.prior = prior;
this.pseudoPrior = pseudoPrior;
this.models = models;
this.modelIndicator = modelIndicator;
}
/**
* Calculate the log likelihood of the current state.
*
* @return the log likelihood.
*/
public double calculateLogLikelihood() {
boolean inModel = false;
int modelCode = (int)modelIndicator.getParameterValue(0);
for(int i = 0; i < models.length; i++){
if(models[i] == modelCode){
inModel = true;
break;
}
}
if(inModel){
distribution = prior;
}else{
distribution = pseudoPrior;
}
double logL = super.calculateLogLikelihood();
return logL;
}
}