package dr.inference.distribution; import dr.math.distributions.Distribution; import dr.inference.model.Parameter; /** * @author Chieh-Hsi Wu */ public class ModelSpecificPseudoPriorLikelihood extends DistributionLikelihood{ private int[] models; protected Distribution prior; protected Distribution pseudoPrior; private Parameter modelIndicator; public ModelSpecificPseudoPriorLikelihood( Distribution prior, Distribution pseudoPrior, Parameter modelIndicator, int[] models){ super(prior); this.prior = prior; this.pseudoPrior = pseudoPrior; this.models = models; this.modelIndicator = modelIndicator; } /** * Calculate the log likelihood of the current state. * * @return the log likelihood. */ public double calculateLogLikelihood() { boolean inModel = false; int modelCode = (int)modelIndicator.getParameterValue(0); for(int i = 0; i < models.length; i++){ if(models[i] == modelCode){ inModel = true; break; } } if(inModel){ distribution = prior; }else{ distribution = pseudoPrior; } double logL = super.calculateLogLikelihood(); return logL; } }