package dr.inference.operators; import dr.inference.model.Parameter; import dr.inferencexml.operators.RandomWalkIntegerNodeHeightWeightedOperatorParser; import dr.math.MathUtils; /** * @author Chieh-Hsi Wu * * The probability an internal node is picked to have its state changed depends on the node height. */ public class RandomWalkIntegerNodeHeightWeightedOperator extends RandomWalkIntegerOperator{ private Parameter internalNodeHeights; public RandomWalkIntegerNodeHeightWeightedOperator( Parameter parameter, int windowSize, double weight, Parameter internalNodeHeights){ super(parameter, windowSize, weight); this.internalNodeHeights = internalNodeHeights; } public double doOperation() { // a random dimension to perturb int index = MathUtils.randomChoicePDF(internalNodeHeights.getParameterValues()); int newValue = calculateNewValue(index); parameter.setValue(index, newValue); return 0.0; } //MCMCOperator INTERFACE public String getOperatorName() { return "randomWalkIntegerNodeHeightWeighted(" + parameter.getId() + ")"; } public double getTargetAcceptanceProbability() { return 0.234; } public double getMinimumAcceptanceLevel() { return 0.1; } public double getMaximumAcceptanceLevel() { return 0.4; } public double getMinimumGoodAcceptanceLevel() { return 0.20; } public double getMaximumGoodAcceptanceLevel() { return 0.30; } public String toString() { return RandomWalkIntegerNodeHeightWeightedOperatorParser.RANDOM_WALK_INT_NODE_HEIGHT_WGT_OP + "(" + parameter.getId() + ", " + windowSize + ", " + getWeight() + ")"; } }