package dr.inference.operators;
import dr.inference.model.Parameter;
import dr.inferencexml.operators.RandomWalkIntegerNodeHeightWeightedOperatorParser;
import dr.math.MathUtils;
/**
* @author Chieh-Hsi Wu
*
* The probability an internal node is picked to have its state changed depends on the node height.
*/
public class RandomWalkIntegerNodeHeightWeightedOperator extends RandomWalkIntegerOperator{
private Parameter internalNodeHeights;
public RandomWalkIntegerNodeHeightWeightedOperator(
Parameter parameter, int windowSize, double weight, Parameter internalNodeHeights){
super(parameter, windowSize, weight);
this.internalNodeHeights = internalNodeHeights;
}
public double doOperation() {
// a random dimension to perturb
int index = MathUtils.randomChoicePDF(internalNodeHeights.getParameterValues());
int newValue = calculateNewValue(index);
parameter.setValue(index, newValue);
return 0.0;
}
//MCMCOperator INTERFACE
public String getOperatorName() {
return "randomWalkIntegerNodeHeightWeighted(" + parameter.getId() + ")";
}
public double getTargetAcceptanceProbability() {
return 0.234;
}
public double getMinimumAcceptanceLevel() {
return 0.1;
}
public double getMaximumAcceptanceLevel() {
return 0.4;
}
public double getMinimumGoodAcceptanceLevel() {
return 0.20;
}
public double getMaximumGoodAcceptanceLevel() {
return 0.30;
}
public String toString() {
return RandomWalkIntegerNodeHeightWeightedOperatorParser.RANDOM_WALK_INT_NODE_HEIGHT_WGT_OP +
"(" + parameter.getId() + ", " + windowSize + ", " + getWeight() + ")";
}
}