/*
* GLMSubstitutionModel.java
*
* Copyright (C) 2002-2012 Alexei Drummond, Andrew Rambaut & Marc A. Suchard
*
* This file is part of BEAST.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership and licensing.
*
* BEAST is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* BEAST is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAST; if not, write to the
* Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
* Boston, MA 02110-1301 USA
*/
package dr.app.beagle.evomodel.substmodel;
import dr.evolution.datatype.DataType;
import dr.inference.distribution.LogLinearModel;
import dr.inference.loggers.LogColumn;
import dr.inference.model.BayesianStochasticSearchVariableSelection;
import dr.inference.model.Model;
/**
* @author Marc A. Suchard
*/
public class GLMSubstitutionModel extends ComplexSubstitutionModel {
public GLMSubstitutionModel(String name, DataType dataType, FrequencyModel rootFreqModel,
LogLinearModel glm) {
super(name, dataType, rootFreqModel, null);
this.glm = glm;
addModel(glm);
testProbabilities = new double[stateCount * stateCount];
}
protected void setupRelativeRates(double[] rates) {
System.arraycopy(glm.getXBeta(),0,rates,0,rates.length);
}
protected void handleModelChangedEvent(Model model, Object object, int index) {
if (model == glm) {
updateMatrix = true;
fireModelChanged();
} else
super.handleModelChangedEvent(model, object, index);
}
public LogColumn[] getColumns() {
return glm.getColumns();
}
public double getLogLikelihood() {
double logL = super.getLogLikelihood();
if (logL == 0 &&
BayesianStochasticSearchVariableSelection.Utils.connectedAndWellConditioned(testProbabilities, this)) {
// Also check that graph is connected
return 0;
}
return Double.NEGATIVE_INFINITY;
}
private LogLinearModel glm;
private double[] testProbabilities;
}