package dr.evomodelxml.coalescent; import dr.evomodel.coalescent.BayesianSkylineLikelihood; import dr.evomodel.tree.TreeModel; import dr.inference.model.Parameter; import dr.xml.*; import java.util.logging.Logger; /** */ public class BayesianSkylineLikelihoodParser extends AbstractXMLObjectParser { public static final String SKYLINE_LIKELIHOOD = "generalizedSkyLineLikelihood"; public static final String POPULATION_SIZES = "populationSizes"; public static final String GROUP_SIZES = "groupSizes"; public static final String TYPE = "type"; public static final String STEPWISE = "stepwise"; public static final String LINEAR = "linear"; public static final String EXPONENTIAL = "exponential"; public String getParserName() { return SKYLINE_LIKELIHOOD; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { XMLObject cxo = xo.getChild(POPULATION_SIZES); Parameter param = (Parameter) cxo.getChild(Parameter.class); cxo = xo.getChild(GROUP_SIZES); Parameter param2 = (Parameter) cxo.getChild(Parameter.class); cxo = xo.getChild(CoalescentLikelihoodParser.POPULATION_TREE); TreeModel treeModel = (TreeModel) cxo.getChild(TreeModel.class); int type = BayesianSkylineLikelihood.LINEAR_TYPE; String typeName = LINEAR; if (xo.hasAttribute(LINEAR) && !xo.getBooleanAttribute(LINEAR)) { type = BayesianSkylineLikelihood.STEPWISE_TYPE; typeName = STEPWISE; } if (xo.hasAttribute(TYPE)) { if (xo.getStringAttribute(TYPE).equalsIgnoreCase(STEPWISE)) { type = BayesianSkylineLikelihood.STEPWISE_TYPE; typeName = STEPWISE; } else if (xo.getStringAttribute(TYPE).equalsIgnoreCase(LINEAR)) { type = BayesianSkylineLikelihood.LINEAR_TYPE; typeName = LINEAR; } else if (xo.getStringAttribute(TYPE).equalsIgnoreCase(EXPONENTIAL)) { type = BayesianSkylineLikelihood.EXPONENTIAL_TYPE; typeName = EXPONENTIAL; } else throw new XMLParseException("Unknown Bayesian Skyline type: " + xo.getStringAttribute(TYPE)); } if (param2.getDimension() > (treeModel.getExternalNodeCount()-1)) { throw new XMLParseException("There are more groups (" + param2.getDimension() + ") than coalescent nodes in the tree (" + (treeModel.getExternalNodeCount()-1) + ")."); } Logger.getLogger("dr.evomodel").info("Bayesian skyline plot: " + param.getDimension() + " " + typeName + " control points"); return new BayesianSkylineLikelihood(treeModel, param, param2, type); } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public String getParserDescription() { return "This element represents the likelihood of the tree given the population size vector."; } public Class getReturnType() { return BayesianSkylineLikelihood.class; } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules;{ rules = new XMLSyntaxRule[]{ new XORRule( AttributeRule.newBooleanRule(LINEAR), AttributeRule.newStringRule(TYPE) ), new ElementRule(POPULATION_SIZES, new XMLSyntaxRule[]{ new ElementRule(Parameter.class) }), new ElementRule(GROUP_SIZES, new XMLSyntaxRule[]{ new ElementRule(Parameter.class) }), new ElementRule(CoalescentLikelihoodParser.POPULATION_TREE, new XMLSyntaxRule[]{ new ElementRule(TreeModel.class) }), }; } }