package dr.evomodel.branchratemodel;
import dr.inference.model.Parameter;
import dr.inference.model.Variable;
/**
* @author Marc Suchard
*/
public class ContinuousEpochBranchRateModel extends RateEpochBranchRateModel {
/**
* The constructor. For an N-epoch model, there should be N rate paramters and N-1 transition times.
*
* @param timeParameters an array of transition time parameters
* @param rateParameters an array of rate parameters
*/
public ContinuousEpochBranchRateModel(Parameter[] timeParameters, Parameter[] rateParameters, Parameter rootHeight) {
super(timeParameters, rateParameters);
this.rootHeight = rootHeight;
addVariable(rootHeight);
normalizationKnown = false;
}
protected void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
super.handleVariableChangedEvent(variable, index, type);
normalizationKnown = false;
}
private void normalize() {
normalization = 0.0;
double startTime = 0.0;
double endTime = rootHeight.getParameterValue(0);
int j = 0;
while( j < timeParameters.length && endTime > timeParameters[j].getParameterValue(0)) {
final double nextTime = timeParameters[j].getParameterValue(0);
normalization += (nextTime - startTime) * rateParameters[j].getParameterValue(0);
startTime = nextTime;
j++;
}
normalization += (endTime - startTime) * rateParameters[j].getParameterValue(0);
}
protected void storeState() {
savedNormalization = normalization;
}
protected void restoreState() {
normalization = savedNormalization;
}
protected double normalizeRate(double rate) {
if (!normalizationKnown)
normalize();
return rate / normalization;
}
private Parameter rootHeight;
private double normalization;
private double savedNormalization;
private boolean normalizationKnown = false;
}