package dr.evoxml; import dr.xml.*; import dr.inference.model.Parameter; import dr.inference.model.PearsonCorrelation; /** * @author Simon Greenhill */ public class PearsonCorrelationParser extends AbstractXMLObjectParser { public static final String PEARSON_CORRELATION = "pearsonCorrelation"; public static final String LOG = "log"; public String getParserName() { return PEARSON_CORRELATION; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { boolean log = xo.getAttribute(LOG, false); Parameter X = (Parameter)xo.getChild(0); Parameter Y = (Parameter)xo.getChild(1); // System.out.println("Correlating " + X + " with " + Y + " using log = " + log); PearsonCorrelation pearsonCorrelation = new PearsonCorrelation(X, Y, log); return pearsonCorrelation; } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public String getParserDescription() { return "A Pearson Correlation between two Parameters"; } public String getExample() { return "<pearsonCorrelation id=\"r\" log=\"true\">\n"+ " <parameter idref=\"param1\"/>\n"+ " <parameter idref=\"param2\"/>\n"+ "</pearsonCorrelation>\n"; } public Class getReturnType() { return PearsonCorrelation.class; } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { // There should be two and only two Parameters (X & Y) new ElementRule(Parameter.class, 2, 2), // the optional log attribute has to be a Boolean AttributeRule.newBooleanRule(LOG, true), }; }