package dr.inferencexml.model;
import dr.inference.model.OneOnXPrior;
import dr.inference.model.Statistic;
import dr.xml.*;
/**
* Reads a distribution likelihood from a DOM Document element.
*/
public class OneOnXPriorParser extends AbstractXMLObjectParser {
public static final String ONE_ONE_X_PRIOR = "oneOnXPrior";
public static final String JEFFREYS_PRIOR = "jeffreysPrior";
public static final String DATA = "data";
public String getParserName() {
return ONE_ONE_X_PRIOR;
}
public String[] getParserNames() {
return new String[]{getParserName(), JEFFREYS_PRIOR};
}
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
OneOnXPrior likelihood = new OneOnXPrior();
XMLObject cxo = xo;
if (xo.hasChildNamed(DATA)) {
cxo = xo.getChild(DATA);
}
for (int i = 0; i < cxo.getChildCount(); i++) {
if (cxo.getChild(i) instanceof Statistic) {
likelihood.addData((Statistic) cxo.getChild(i));
}
}
return likelihood;
}
//************************************************************************
// AbstractXMLObjectParser implementation
//************************************************************************
public XMLSyntaxRule[] getSyntaxRules() {
return rules;
}
private final XMLSyntaxRule[] rules = {
new XORRule(
new ElementRule(Statistic.class, 1, Integer.MAX_VALUE),
new ElementRule(DATA, new XMLSyntaxRule[]{new ElementRule(Statistic.class, 1, Integer.MAX_VALUE)})
)
};
public String getParserDescription() {
return "Calculates the (improper) prior proportional to Prod_i (1/x_i) for the given statistic x.";
}
public Class getReturnType() {
return OneOnXPrior.class;
}
}