/* * ComplexSubstitutionModelParser.java * * Copyright (C) 2002-2012 Alexei Drummond, Andrew Rambaut & Marc A. Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.app.beagle.evomodel.parsers; import dr.app.beagle.evomodel.substmodel.ComplexSubstitutionModel; import dr.app.beagle.evomodel.substmodel.FrequencyModel; import dr.app.beagle.evomodel.substmodel.SVSComplexSubstitutionModel; import dr.app.beagle.evomodel.substmodel.SubstitutionModel; import dr.evolution.datatype.DataType; import dr.inference.model.BayesianStochasticSearchVariableSelection; import dr.inference.model.Parameter; import dr.xml.*; import java.util.logging.Logger; /** * @author Marc Suchard */ public class ComplexSubstitutionModelParser extends AbstractXMLObjectParser { public static final String COMPLEX_SUBSTITUTION_MODEL = "complexSubstitutionModel"; public static final String SVS_COMPLEX_SUBSTITUTION_MODEL = "svsComplexSubstitutionModel"; public static final String DATA_TYPE = "dataType"; public static final String RATES = "rates"; public static final String FREQUENCIES = "frequencies"; public static final String ROOT_FREQUENCIES = "rootFrequencies"; public static final String RANDOMIZE = "randomizeIndicator"; public static final String INDICATOR = "rateIndicator"; public static final String BSSVS_TOLERANCE = "bssvsTolerance"; public static final String BSSVS_SCALAR = "bssvsScalar"; public static final int maxRandomizationTries = 100; public String getParserName() { return COMPLEX_SUBSTITUTION_MODEL; } public String[] getParserNames() { return new String[] {COMPLEX_SUBSTITUTION_MODEL, SVS_COMPLEX_SUBSTITUTION_MODEL}; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { Parameter ratesParameter; XMLObject cxo; if (xo.hasChildNamed(FREQUENCIES)) { cxo = xo.getChild(FREQUENCIES); } else { cxo = xo.getChild(ROOT_FREQUENCIES); } FrequencyModel freqModel = (FrequencyModel) cxo.getChild(FrequencyModel.class); DataType dataType = freqModel.getDataType(); cxo = xo.getChild(RATES); int states = dataType.getStateCount(); Logger.getLogger("dr.app.beagle.evomodel").info(" Complex Substitution Model (stateCount=" + states + ")"); ratesParameter = (Parameter) cxo.getChild(Parameter.class); int rateCount = (dataType.getStateCount() - 1) * dataType.getStateCount(); if (ratesParameter == null) { if (rateCount == 1) { // simplest model for binary traits... } else { throw new XMLParseException("No rates parameter found in " + getParserName()); } } else if (ratesParameter.getDimension() != rateCount) { throw new XMLParseException("Rates parameter in " + getParserName() + " element should have " + rateCount + " dimensions."); } if (!xo.hasChildNamed(INDICATOR)) { return new ComplexSubstitutionModel(COMPLEX_SUBSTITUTION_MODEL,dataType, freqModel, ratesParameter); } cxo = xo.getChild(INDICATOR); Parameter indicatorParameter = (Parameter) cxo.getChild(Parameter.class); if (indicatorParameter == null || ratesParameter == null || indicatorParameter.getDimension() != ratesParameter.getDimension()) throw new XMLParseException("Rates and indicator parameters in " + getParserName() + " element must be the same dimension."); if (xo.hasAttribute(BSSVS_TOLERANCE)) { double tolerance = xo.getAttribute(BSSVS_TOLERANCE, BayesianStochasticSearchVariableSelection.Utils.getTolerance()); if (tolerance > BayesianStochasticSearchVariableSelection.Utils.getTolerance()) { // Only increase smallest allowed tolerance BayesianStochasticSearchVariableSelection.Utils.setTolerance(tolerance); Logger.getLogger("dr.app.beagle.evomodel").info("\tIncreasing BSSVS tolerance to " + tolerance); } } if (xo.hasAttribute(BSSVS_SCALAR)) { double scalar = xo.getAttribute(BSSVS_SCALAR, BayesianStochasticSearchVariableSelection.Utils.getScalar()); if (scalar < BayesianStochasticSearchVariableSelection.Utils.getScalar()) { BayesianStochasticSearchVariableSelection.Utils.setScalar(scalar); Logger.getLogger("dr.app.beagle.evomodel").info("\tDecreasing BSSVS scalar to " + scalar); } } SVSComplexSubstitutionModel model = new SVSComplexSubstitutionModel(SVS_COMPLEX_SUBSTITUTION_MODEL,dataType, freqModel, ratesParameter, indicatorParameter); boolean randomize = xo.getAttribute(RANDOMIZE, false); if (randomize) { // Randomization may need multiple tries int tries = 0; boolean valid = false; while (!valid && tries < maxRandomizationTries) { BayesianStochasticSearchVariableSelection.Utils.randomize(indicatorParameter, dataType.getStateCount(),false); valid = !Double.isInfinite(model.getLogLikelihood()); tries++; } Logger.getLogger("dr.app.beagle.evomodel").info("\tRandomization attempts: " + tries); } Logger.getLogger("dr.app.beagle.evomodel").info("\t\tPlease cite: Edwards, Suchard et al. (2011)\n"); return model; } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public String getParserDescription() { return "A general irreversible model of sequence substitution for any data type."; } public Class getReturnType() { return SubstitutionModel.class; } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { new XORRule( new StringAttributeRule(DataType.DATA_TYPE, "The type of sequence data", DataType.getRegisteredDataTypeNames(), false), new ElementRule(DataType.class), true // Optional ), AttributeRule.newBooleanRule(RANDOMIZE,true), new XORRule( new ElementRule(FREQUENCIES,FrequencyModel.class), new ElementRule(ROOT_FREQUENCIES,FrequencyModel.class)), new ElementRule(RATES, new XMLSyntaxRule[]{ new ElementRule(Parameter.class, true)} ), new ElementRule(INDICATOR, new XMLSyntaxRule[]{ new ElementRule(Parameter.class) },true), AttributeRule.newDoubleRule(BSSVS_TOLERANCE, true), AttributeRule.newDoubleRule(BSSVS_SCALAR, true), }; }