/* * DiscretizedBranchRates.java * * Copyright (C) 2002-2009 Alexei Drummond and Andrew Rambaut * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.evomodel.branchratemodel; import dr.evolution.tree.NodeRef; import dr.evolution.tree.Tree; import dr.evolution.util.Taxon; import dr.evomodel.tree.TreeModel; import dr.evomodel.tree.TreeParameterModel; import dr.evomodelxml.branchratemodel.DiscretizedBranchRatesParser; import dr.inference.distribution.ParametricDistributionModel; import dr.inference.model.Model; import dr.inference.model.ModelListener; import dr.inference.model.Parameter; import dr.inference.model.Variable; /** * @author Alexei Drummond * @author Andrew Rambaut * @author Michael Defoin Platel * @version $Id: DiscretizedBranchRates.java,v 1.11 2006/01/09 17:44:30 rambaut Exp $ */ public class DiscretizedBranchRates extends AbstractBranchRateModel { private final ParametricDistributionModel distributionModel; // The rate categories of each branch final TreeParameterModel rateCategories; private final int categoryCount; private final double step; private final double[] rates; private boolean normalize = false; private double normalizeBranchRateTo = Double.NaN; private double scaleFactor = 1.0; private TreeModel treeModel; private final double logDensityNormalizationConstant; //overSampling control the number of effective categories public DiscretizedBranchRates( TreeModel tree, Parameter rateCategoryParameter, ParametricDistributionModel model, int overSampling) { this(tree, rateCategoryParameter, model, overSampling, false, Double.NaN); } public DiscretizedBranchRates( TreeModel tree, Parameter rateCategoryParameter, ParametricDistributionModel model, int overSampling, boolean normalize, double normalizeBranchRateTo) { super(DiscretizedBranchRatesParser.DISCRETIZED_BRANCH_RATES); this.rateCategories = new TreeParameterModel(tree, rateCategoryParameter, false); categoryCount = (tree.getNodeCount() - 1) * overSampling; step = 1.0 / (double) categoryCount; rates = new double[categoryCount]; this.normalize = normalize; this.treeModel = tree; this.distributionModel = model; this.normalizeBranchRateTo = normalizeBranchRateTo; //Force the boundaries of rateCategoryParameter to match the category count Parameter.DefaultBounds bound = new Parameter.DefaultBounds(categoryCount - 1, 0, rateCategoryParameter.getDimension()); rateCategoryParameter.addBounds(bound); for (int i = 0; i < rateCategoryParameter.getDimension(); i++) { int index = (int) Math.floor((i + 0.5) * overSampling); rateCategoryParameter.setParameterValue(i, index); } addModel(model); // AR - commented out: changes to the tree are handled by model changed events fired by rateCategories // addModel(tree); addModel(rateCategories); // AR - commented out: changes to rateCategoryParameter are handled by model changed events fired by rateCategories // addVariable(rateCategoryParameter); if (normalize) { tree.addModelListener(new ModelListener() { public void modelChangedEvent(Model model, Object object, int index) { computeFactor(); } public void modelRestored(Model model) { computeFactor(); } }); } setupRates(); // Each parameter take any value in [1, \ldots, categoryCount] // NB But this depends on the transition kernel employed. Using swap-only results in a different constant logDensityNormalizationConstant = -rateCategoryParameter.getDimension() * Math.log(categoryCount); } // compute scale factor private void computeFactor() { //scale mean rate to 1.0 or separate parameter double treeRate = 0.0; double treeTime = 0.0; //normalizeBranchRateTo = 1.0; for (int i = 0; i < treeModel.getNodeCount(); i++) { NodeRef node = treeModel.getNode(i); if (!treeModel.isRoot(node)) { int rateCategory = (int) Math.round(rateCategories.getNodeValue(treeModel, node)); treeRate += rates[rateCategory] * treeModel.getBranchLength(node); treeTime += treeModel.getBranchLength(node); //System.out.println("rates and time\t" + rates[rateCategory] + "\t" + treeModel.getBranchLength(node)); } } //treeRate /= treeTime; scaleFactor = normalizeBranchRateTo / (treeRate / treeTime); //System.out.println("scaleFactor\t\t\t\t\t" + scaleFactor); } public void handleModelChangedEvent(Model model, Object object, int index) { if (model == distributionModel) { setupRates(); fireModelChanged(); } else if (model == rateCategories) { // AR - commented out: if just the rate categories have changed the rates will be the same // setupRates(); fireModelChanged(null, index); } } protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) { // AR - commented out: changes to rateCategoryParameter are handled by model changed events // setupRates(); } protected void storeState() { } protected void restoreState() { setupRates(); } protected void acceptState() { } public double getBranchRate(final Tree tree, final NodeRef node) { assert !tree.isRoot(node) : "root node doesn't have a rate!"; int rateCategory = (int) Math.round(rateCategories.getNodeValue(tree, node)); // whdc: Do not sample for the rate of branches leading up // to adventitious leaves. I would return zero, but that // cause the tree likelihood to return NaN. Taxon taxon = tree.getNodeTaxon( node); if( taxon != null && taxon.getAdventitious()) { return 0.0000001; } //System.out.println(rates[rateCategory] + "\t" + rateCategory); return rates[rateCategory] * scaleFactor; } /** * Calculates the actual rates corresponding to the category indices. */ protected void setupRates() { double z = step / 2.0; for (int i = 0; i < categoryCount; i++) { rates[i] = distributionModel.quantile(z); //System.out.print(rates[i]+"\t"); z += step; } /*if(distributionModel.getClass().getName().equals("dr.inference.distribution.LogNormalDistributionModel")) { LogNormalDistributionModel lndm = (LogNormalDistributionModel) distributionModel; System.out.println("chur " + lndm.getS() +"\t" + lndm.getM()); } else { System.out.println(distributionModel.getClass().getName());}*/ if (normalize) computeFactor(); } public double getLogLikelihood() { return logDensityNormalizationConstant; } }