/* * NormalDistributionModel.java * * Copyright (C) 2002-2009 Alexei Drummond and Andrew Rambaut * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.inference.distribution; import dr.inference.model.AbstractModel; import dr.inference.model.Model; import dr.inference.model.Parameter; import dr.inference.model.Variable; import dr.inferencexml.distribution.NormalDistributionModelParser; import dr.math.UnivariateFunction; import dr.math.distributions.NormalDistribution; import org.w3c.dom.Document; import org.w3c.dom.Element; /** * A class that acts as a model for normally distributed data. * * @author Alexei Drummond * @version $Id: NormalDistributionModel.java,v 1.6 2005/05/24 20:25:59 rambaut Exp $ */ public class NormalDistributionModel extends AbstractModel implements ParametricDistributionModel { /** * Constructor. */ public NormalDistributionModel(Variable<Double> mean, Variable<Double> stdev) { super(NormalDistributionModelParser.NORMAL_DISTRIBUTION_MODEL); this.mean = mean; this.stdev = stdev; addVariable(mean); mean.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, 1)); addVariable(stdev); stdev.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, 0.0, 1)); } public NormalDistributionModel(Parameter meanParameter, Parameter scale, boolean isPrecision) { super(NormalDistributionModelParser.NORMAL_DISTRIBUTION_MODEL); this.hasPrecision = isPrecision; this.mean = meanParameter; addVariable(meanParameter); meanParameter.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, 1)); if (isPrecision) { this.precision = scale; this.stdev = null; // todo why not keep the name scale to avoid confusion?? } else { this.stdev = scale; } addVariable(scale); scale.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, 0.0, 1)); } public double getStdev() { if (hasPrecision) return 1.0 / Math.sqrt(precision.getValue(0)); return stdev.getValue(0); } public Variable<Double> getMean() { return mean; } public Variable<Double> getPrecision() { if (hasPrecision) return precision; return null; } // ***************************************************************** // Interface Distribution // ***************************************************************** public double pdf(double x) { return NormalDistribution.pdf(x, mean(), getStdev()); } public double logPdf(double x) { return NormalDistribution.logPdf(x, mean(), getStdev()); } public double cdf(double x) { return NormalDistribution.cdf(x, mean(), getStdev()); } public double quantile(double y) { return NormalDistribution.quantile(y, mean(), getStdev()); } public double mean() { return mean.getValue(0); } public double variance() { if (hasPrecision) return 1.0 / precision.getValue(0); double sd = stdev.getValue(0); return sd * sd; } public final UnivariateFunction getProbabilityDensityFunction() { return pdfFunction; } private final UnivariateFunction pdfFunction = new UnivariateFunction() { public final double evaluate(double x) { return pdf(x); } public final double getLowerBound() { return Double.NEGATIVE_INFINITY; } public final double getUpperBound() { return Double.POSITIVE_INFINITY; } }; // ***************************************************************** // Interface Model // ***************************************************************** public void handleModelChangedEvent(Model model, Object object, int index) { // no intermediates need to be recalculated... } protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) { // no intermediates need to be recalculated... } protected void storeState() { } // no additional state needs storing protected void restoreState() { } // no additional state needs restoring protected void acceptState() { } // no additional state needs accepting public Element createElement(Document document) { throw new RuntimeException("Not implemented!"); } // ************************************************************** // Private instance variables // ************************************************************** private final Variable<Double> mean; private final Variable<Double> stdev; private Variable<Double> precision; private boolean hasPrecision = false; }