/* * BinomialLikelihood.java * * Copyright (c) 2002-2012 Alexei Drummond, Andrew Rambaut and Marc Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.inference.distribution; import dr.inference.model.AbstractModelLikelihood; import dr.inference.model.Model; import dr.inference.model.Parameter; import dr.inference.model.Variable; import dr.math.Binomial; import org.w3c.dom.Document; import org.w3c.dom.Element; /** * A class that returns the log likelihood of a set of data (statistics) * being distributed according to a binomial distribution. * * @author Alexei Drummond * @version $Id: BinomialLikelihood.java,v 1.5 2005/05/24 20:25:59 rambaut Exp $ */ public class BinomialLikelihood extends AbstractModelLikelihood { public static final String BINOMIAL_LIKELIHOOD = "binomialLikelihood"; public BinomialLikelihood(Parameter trialsParameter, Parameter proportionParameter, Parameter countsParameter) { super(BINOMIAL_LIKELIHOOD); this.trialsParameter = trialsParameter; this.proportionParameter = proportionParameter; this.countsParameter = countsParameter; addVariable(trialsParameter); addVariable(proportionParameter); addVariable(countsParameter); } // ************************************************************** // Likelihood IMPLEMENTATION // ************************************************************** public Model getModel() { return this; } /** * Calculate the log likelihood of the current state. * * @return the log likelihood. */ public double getLogLikelihood() { double p = proportionParameter.getParameterValue(0); if (p <= 0 || p >= 1) return Double.NEGATIVE_INFINITY; double logP = Math.log(p); double log1MinusP = Math.log(1.0 - p); double logL = 0.0; for (int i = 0; i < trialsParameter.getDimension(); i++) { int trials = (int) Math.round(trialsParameter.getParameterValue(i)); int counts = (int) Math.round(countsParameter.getParameterValue(i)); if (counts > trials) return Double.NEGATIVE_INFINITY; logL += binomialLogLikelihood(trials, counts, logP, log1MinusP); } return logL; } public void makeDirty() { } public void acceptState() { // DO NOTHING } public void restoreState() { // DO NOTHING } public void storeState() { // DO NOTHING } protected void handleModelChangedEvent(Model model, Object object, int index) { // DO NOTHING } protected final void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) { // DO NOTHING } /** * @return the binomial likelihood of obtaining the gicen count in the given number of trials, * when the log of the probability is logP. */ private double binomialLogLikelihood(int trials, int count, double logP, double log1MinusP) { return Math.log(Binomial.choose(trials, count)) + (logP * count) + (log1MinusP * (trials - count)); } // ************************************************************** // XMLElement IMPLEMENTATION // ************************************************************** public Element createElement(Document d) { throw new RuntimeException("Not implemented yet!"); } Parameter trialsParameter; Parameter proportionParameter; Parameter countsParameter; }