package dr.inferencexml.operators; import dr.inference.operators.MCMCOperator; import dr.inference.operators.TeamOperator; import dr.xml.*; /** * */ public class TeamOperatorParser extends AbstractXMLObjectParser { public static final String TEAM_OPERATOR = "teamOperator"; public static final String SUBSET_SIZE = "size"; // public static final String TARGET_ACCEPTANCE = "targetAcceptance"; public String getParserName() { return TEAM_OPERATOR; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { final double weight = xo.getDoubleAttribute(MCMCOperator.WEIGHT); final int size = xo.getIntegerAttribute(SUBSET_SIZE); //final double targetProb = xo.getAttribute(TARGET_ACCEPTANCE, 0.2); // if (targetProb <= 0.0 || targetProb >= 1.0) // throw new RuntimeException("Target acceptance probability must be between 0.0 and 1.0"); MCMCOperator[] o = new MCMCOperator[xo.getChildCount()]; for (int i = 0; i < o.length; i++) { o[i] = (MCMCOperator) xo.getChild(i); } return new TeamOperator(o, size, weight); } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public String getParserDescription() { return "An arbitrary list of operators; A random subset of size N is aggregated in one operation." + " Operators may have unequal weights - in that case a subset probability of selection is proportional to " + "the sum of it's members weights."; } public Class getReturnType() { return TeamOperator.class; } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { new ElementRule(MCMCOperator.class, 1, Integer.MAX_VALUE), AttributeRule.newDoubleRule(MCMCOperator.WEIGHT), AttributeRule.newIntegerRule(SUBSET_SIZE) //AttributeRule.newDoubleRule(TARGET_ACCEPTANCE, true) }; }