package dr.evomodel.antigenic; import dr.evolution.util.Taxa; import dr.evolution.util.Taxon; import dr.evolution.util.TaxonList; import dr.inference.model.*; import dr.math.MathUtils; import dr.math.distributions.NormalDistribution; import dr.stats.Regression; import dr.util.Author; import dr.util.Citable; import dr.util.Citation; import dr.util.DataTable; import dr.xml.*; import java.io.FileReader; import java.io.IOException; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.logging.Logger; /** * @author Andrew Rambaut * @author Trevor Bedford * @author Marc Suchard * @version $Id$ */ public class AntigenicDistancePrior extends AbstractModelLikelihood implements Citable { public final static String ANTIGENIC_DISTANCE_PRIOR = "antigenicDistancePrior"; public AntigenicDistancePrior( MatrixParameter locationsParameter, Parameter datesParameter, Parameter regressionSlopeParameter, Parameter regressionPrecisionParameter ) { super(ANTIGENIC_DISTANCE_PRIOR); this.locationsParameter = locationsParameter; addVariable(this.locationsParameter); this.datesParameter = datesParameter; addVariable(this.datesParameter); dimension = locationsParameter.getParameter(0).getDimension(); count = locationsParameter.getParameterCount(); this.regressionSlopeParameter = regressionSlopeParameter; addVariable(regressionSlopeParameter); regressionSlopeParameter.addBounds(new Parameter.DefaultBounds(Double.MAX_VALUE, 0.0, 1)); this.regressionPrecisionParameter = regressionPrecisionParameter; addVariable(regressionPrecisionParameter); regressionPrecisionParameter.addBounds(new Parameter.DefaultBounds(Double.MAX_VALUE, 0.0, 1)); likelihoodKnown = false; earliestDate = datesParameter.getParameterValue(0); for (int i=0; i<count; i++) { double date = datesParameter.getParameterValue(i); if (earliestDate > date) { earliestDate = date; } } } @Override protected void handleModelChangedEvent(Model model, Object object, int index) { } @Override protected void handleVariableChangedEvent(Variable variable, int index, Variable.ChangeType type) { if (variable == locationsParameter || variable == datesParameter || variable == regressionSlopeParameter || variable == regressionPrecisionParameter) { likelihoodKnown = false; } } @Override protected void storeState() { storedLogLikelihood = logLikelihood; } @Override protected void restoreState() { logLikelihood = storedLogLikelihood; likelihoodKnown = false; } @Override protected void acceptState() { } @Override public Model getModel() { return this; } @Override public double getLogLikelihood() { if (!likelihoodKnown) { logLikelihood = computeLogLikelihood(); } return logLikelihood; } private double computeLogLikelihood() { double precision = regressionPrecisionParameter.getParameterValue(0); double logLikelihood = (0.5 * Math.log(precision) * count) - (0.5 * precision * sumOfSquaredResiduals()); likelihoodKnown = true; return logLikelihood; } // go through each location and compute sum of squared residuals from regression line protected double sumOfSquaredResiduals() { double ssr = 0.0; for (int i=0; i < count; i++) { Parameter loc = locationsParameter.getParameter(i); double date = datesParameter.getParameterValue(i); double beta = regressionSlopeParameter.getParameterValue(0); double x = loc.getParameterValue(0); double y = (date-earliestDate) * beta; ssr += (x - y) * (x - y); for (int j=1; j < dimension; j++) { x = loc.getParameterValue(j); ssr += x*x; } } return ssr; } protected double computeDistance(int rowStrain, int columnStrain) { if (rowStrain == columnStrain) { return 0.0; } Parameter X = locationsParameter.getParameter(rowStrain); Parameter Y = locationsParameter.getParameter(columnStrain); double sum = 0.0; for (int i = 0; i < dimension; i++) { double difference = X.getParameterValue(i) - Y.getParameterValue(i); sum += difference * difference; } return Math.sqrt(sum); } @Override public void makeDirty() { likelihoodKnown = false; } private final int dimension; private final int count; private final Parameter datesParameter; private final MatrixParameter locationsParameter; private final Parameter regressionSlopeParameter; private final Parameter regressionPrecisionParameter; private double earliestDate; private double logLikelihood = 0.0; private double storedLogLikelihood = 0.0; private boolean likelihoodKnown = false; // ************************************************************** // XMLObjectParser // ************************************************************** public static XMLObjectParser PARSER = new AbstractXMLObjectParser() { public final static String LOCATIONS = "locations"; public final static String DATES = "dates"; public final static String REGRESSIONSLOPE = "regressionSlope"; public final static String REGRESSIONPRECISION = "regressionPrecision"; public String getParserName() { return ANTIGENIC_DISTANCE_PRIOR; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { MatrixParameter locationsParameter = (MatrixParameter) xo.getElementFirstChild(LOCATIONS); Parameter datesParameter = (Parameter) xo.getElementFirstChild(DATES); Parameter regressionSlopeParameter = (Parameter) xo.getElementFirstChild(REGRESSIONSLOPE); Parameter regressionPrecisionParameter = (Parameter) xo.getElementFirstChild(REGRESSIONPRECISION); AntigenicDistancePrior AGDP = new AntigenicDistancePrior( locationsParameter, datesParameter, regressionSlopeParameter, regressionPrecisionParameter); // Logger.getLogger("dr.evomodel").info("Using EvolutionaryCartography model. Please cite:\n" + Utils.getCitationString(AGL)); return AGDP; } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public String getParserDescription() { return "Provides the likelihood of a vector of coordinates in some multidimensional 'antigenic' space based on an expected relationship with time."; } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { new ElementRule(LOCATIONS, MatrixParameter.class), new ElementRule(DATES, Parameter.class), new ElementRule(REGRESSIONSLOPE, Parameter.class), new ElementRule(REGRESSIONPRECISION, Parameter.class) }; public Class getReturnType() { return ContinuousAntigenicTraitLikelihood.class; } }; public List<Citation> getCitations() { List<Citation> citations = new ArrayList<Citation>(); citations.add(new Citation( new Author[]{ new Author("T", "Bedford"), new Author("MA", "Suchard"), new Author("P", "Lemey"), new Author("G", "Dudas"), new Author("C", "Russell"), new Author("D", "Smith"), new Author("A", "Rambaut") }, Citation.Status.IN_PREPARATION )); return citations; } }