package dr.inferencexml.distribution; import dr.xml.AbstractXMLObjectParser; import dr.xml.XMLObject; import dr.xml.XMLParseException; import dr.xml.XMLSyntaxRule; import dr.inference.distribution.DistributionLikelihood; import dr.inference.distribution.ModelSpecificPseudoPriorLikelihood; import dr.inference.model.Parameter; import dr.math.distributions.Distribution; /** * @author Chieh-Hsi Wu */ public class ModelSpecificPseudoPriorLikelihoodParser extends AbstractXMLObjectParser { public static final String MODEL_SPECIFIC_PSEUDO_PRIOR = "modelSpecificPseudoPrior"; public static final String PRIOR = "priorLik"; public static final String PSEUDO_PRIOR = "pseudoPriorLik"; public static final String MODELS = "models"; public static final String MODEL_INDICATOR = "modelIndicator"; public static final String SELECTED_VARIABLE = "selectedVariable"; public String getParserName() { return MODEL_SPECIFIC_PSEUDO_PRIOR; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { DistributionLikelihood priorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PRIOR); DistributionLikelihood pseudoPriorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PSEUDO_PRIOR); Distribution prior = priorLikelihood.getDistribution(); Distribution pseudoPrior = pseudoPriorLikelihood.getDistribution(); Parameter modelIndicator = (Parameter)xo.getElementFirstChild(MODEL_INDICATOR); int[] models = xo.getIntegerArrayAttribute(MODELS); Parameter selectedVariable = (Parameter)xo.getElementFirstChild(SELECTED_VARIABLE); ModelSpecificPseudoPriorLikelihood likelihood = new ModelSpecificPseudoPriorLikelihood( prior, pseudoPrior, modelIndicator, models ); likelihood.addData(selectedVariable); return likelihood; } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { }; public String getParserDescription() { return "Calculates the likelihood of some data given some parametric or empirical distribution."; } public Class getReturnType() { return ModelSpecificPseudoPriorLikelihood.class; } }