package dr.inference.distribution;
import dr.math.distributions.Distribution;
import dr.inference.model.Parameter;
/**
* @author Chieh-Hsi Wu
*
* This class facilitates the pseudo-prior for model averaging by bayesian stochastic sampling.
*/
public class TwoPartsDistributionLikelihood extends DistributionLikelihood{
public static final int PRESENT = 1;
public static final int ABSENT = 0;
protected Distribution prior;
protected Distribution pseudoPrior;
protected Parameter bitVector;
protected int paramIndex;
public TwoPartsDistributionLikelihood(
Distribution prior,
Distribution pseudoPrior,
Parameter bitVector,
int paramIndex){
super(prior);
this.prior = distribution;
this.pseudoPrior = pseudoPrior;
this.bitVector = bitVector;
this.paramIndex = paramIndex;
}
// **************************************************************
// Likelihood IMPLEMENTATION
// **************************************************************
/**
* Calculate the log likelihood of the current state.
*
* @return the log likelihood.
*/
public double calculateLogLikelihood() {
int paramStatus = (int)bitVector.getParameterValue(paramIndex);
//System.out.println(paramStatus);
if(paramStatus == PRESENT){
distribution = prior;
}else if(paramStatus == ABSENT){
distribution = pseudoPrior;
}
double logL = super.calculateLogLikelihood();
//System.out.println(paramStatus+" "+logL);
return logL;
}
}