package dr.inference.distribution; import dr.math.distributions.Distribution; import dr.inference.model.Parameter; /** * @author Chieh-Hsi Wu * * This class facilitates the pseudo-prior for model averaging by bayesian stochastic sampling. */ public class TwoPartsDistributionLikelihood extends DistributionLikelihood{ public static final int PRESENT = 1; public static final int ABSENT = 0; protected Distribution prior; protected Distribution pseudoPrior; protected Parameter bitVector; protected int paramIndex; public TwoPartsDistributionLikelihood( Distribution prior, Distribution pseudoPrior, Parameter bitVector, int paramIndex){ super(prior); this.prior = distribution; this.pseudoPrior = pseudoPrior; this.bitVector = bitVector; this.paramIndex = paramIndex; } // ************************************************************** // Likelihood IMPLEMENTATION // ************************************************************** /** * Calculate the log likelihood of the current state. * * @return the log likelihood. */ public double calculateLogLikelihood() { int paramStatus = (int)bitVector.getParameterValue(paramIndex); //System.out.println(paramStatus); if(paramStatus == PRESENT){ distribution = prior; }else if(paramStatus == ABSENT){ distribution = pseudoPrior; } double logL = super.calculateLogLikelihood(); //System.out.println(paramStatus+" "+logL); return logL; } }