package dr.evomodel.continuous; import dr.evolution.alignment.PatternList; import dr.evolution.datatype.TwoStates; import dr.evolution.tree.NodeRef; import dr.evomodel.tree.TreeModel; import dr.inference.model.*; import dr.util.Citable; import dr.util.Citation; import dr.util.CommonCitations; import dr.xml.*; import java.util.ArrayList; import java.util.List; import java.util.logging.Logger; /** * A class to model multivariate {0,1} data as realizations from a latent (liability) multivariate Brownian diffusion * * @author Marc A. Suchard * @author Joe Felsenstein * @version $Id$ */ public class LatentLiabilityLikelihood extends AbstractModelLikelihood implements Citable { public final static String LATENT_LIABILITY_LIKELIHOOD = "latentLiabilityLikelihood"; public LatentLiabilityLikelihood(TreeModel treeModel, PatternList patternList, CompoundParameter tipTraitParameter) { super(LATENT_LIABILITY_LIKELIHOOD); this.treeModel = treeModel; this.patternList = patternList; this.tipTraitParameter = tipTraitParameter; addVariable(tipTraitParameter); setTipDataValuesForAllNodes(); StringBuilder sb = new StringBuilder(); sb.append("Constructing a latent liability likelihood model:\n"); sb.append("\tBinary patterns: ").append(patternList.getId()).append("\n"); sb.append("\tPlease cite:\n").append(Citable.Utils.getCitationString(this)); Logger.getLogger("dr.evomodel.continous").info(sb.toString()); } private void setTipDataValuesForAllNodes() { if (tipData == null) { tipData = new boolean[treeModel.getExternalNodeCount()][patternList.getPatternCount()]; } for (int i = 0; i < treeModel.getExternalNodeCount(); i++) { NodeRef node = treeModel.getExternalNode(i); String id = treeModel.getTaxonId(i); int index = patternList.getTaxonIndex(id); setTipDataValuesForNode(node, index); } } private void setTipDataValuesForNode(NodeRef node, int indexFromPatternList) { // Set tip data values int index = node.getNumber(); if (index != indexFromPatternList) { throw new RuntimeException("Need to figure out the indexing"); } for (int datum = 0; datum < patternList.getPatternCount(); ++datum) { tipData[index][datum] = patternList.getPattern(datum)[index] == 1; if (DEBUG) { Parameter oneTipTraitParameter = tipTraitParameter.getParameter(index); System.err.println("Data = " + tipData[index][datum] + " : " + oneTipTraitParameter.getParameterValue(datum)); } } } @Override protected void handleModelChangedEvent(Model model, Object object, int index) { } @Override protected void handleVariableChangedEvent(Variable variable, int index, Variable.ChangeType type) { likelihoodKnown = false; } @Override protected void storeState() { storedLogLikelihood = logLikelihood; } @Override protected void restoreState() { logLikelihood = storedLogLikelihood; likelihoodKnown = true; } @Override protected void acceptState() { // do nothing } public void makeDirty() { likelihoodKnown = false; } public Model getModel() { return this; } public double getLogLikelihood() { if (!likelihoodKnown) { logLikelihood = computeLogLikelihood(); likelihoodKnown = true; } return logLikelihood; } public String toString() { return getClass().getName() + "(" + getLogLikelihood() + ")"; } protected double computeLogLikelihood() { boolean valid = true; for (int tip = 0; tip < tipData.length && valid; ++tip) { valid = validTraitForTip(tip); } if (valid) { return 0.0; } else { return Double.NEGATIVE_INFINITY; } } public boolean validTraitForTip(int tip) { boolean valid = true; Parameter oneTipTraitParameter = tipTraitParameter.getParameter(tip); boolean[] data = tipData[tip]; for (int index = 0; index < data.length && valid; ++index) { boolean datum = data[index]; double trait = oneTipTraitParameter.getParameterValue(index); boolean positive = trait > 0.0; valid = datum == positive; } return valid; } // ************************************************************** // XMLObjectParser // ************************************************************** public static XMLObjectParser PARSER = new AbstractXMLObjectParser() { public final static String TIP_TRAIT = "tipTrait"; public String getParserName() { return LATENT_LIABILITY_LIKELIHOOD; } public Object parseXMLObject(XMLObject xo) throws XMLParseException { AbstractMultivariateTraitLikelihood traitLikelihood = (AbstractMultivariateTraitLikelihood) xo.getChild(AbstractMultivariateTraitLikelihood.class); PatternList patternList = (PatternList) xo.getChild(PatternList.class); TreeModel treeModel = (TreeModel) xo.getChild(TreeModel.class); CompoundParameter tipTraitParameter = (CompoundParameter) xo.getElementFirstChild(TIP_TRAIT); int numTaxa = treeModel.getTaxonCount(); int numData = traitLikelihood.getNumData(); int dimTrait = traitLikelihood.getDimTrait(); if (tipTraitParameter.getDimension() != numTaxa * numData * dimTrait) { throw new XMLParseException("Tip trait parameter is wrong dimension in latent liability model"); } if (!(patternList.getDataType() instanceof TwoStates)) { throw new XMLParseException("Latent liability model currently only works for binary data"); } if (patternList.getPatternCount() != numData * dimTrait) { throw new XMLParseException("Binary data is wrong dimension in latent liability model"); } return new LatentLiabilityLikelihood(treeModel, patternList, tipTraitParameter); } //************************************************************************ // AbstractXMLObjectParser implementation //************************************************************************ public String getParserDescription() { return "Provides the likelihood of a latent liability model on multivariate-binary trait data"; } public XMLSyntaxRule[] getSyntaxRules() { return rules; } private final XMLSyntaxRule[] rules = { new ElementRule(AbstractMultivariateTraitLikelihood.class, "The model for the latent random variables"), new ElementRule(TIP_TRAIT, CompoundParameter.class, "The parameter of tip locations from the tree"), new ElementRule(PatternList.class, "The binary tip data"), new ElementRule(TreeModel.class, "The tree model"), }; public Class getReturnType() { return LatentLiabilityLikelihood.class; } }; public List<Citation> getCitations() { List<Citation> citations = new ArrayList<Citation>(); citations.add( CommonCitations.SUCHARD_2012_LATENT ); return citations; } private TreeModel treeModel; private PatternList patternList; private CompoundParameter tipTraitParameter; private boolean[][] tipData; private boolean likelihoodKnown = false; private double logLikelihood; private double storedLogLikelihood; private static final boolean DEBUG = false; }