package dr.inference.model;
import dr.stats.DiscreteStatistics;
/**
* @author Simon Greenhill
* @author Alexei Drummond
*/
public class PearsonCorrelation extends Statistic.Abstract {
Parameter X, Y;
boolean log = false;
public PearsonCorrelation(Parameter X, Parameter Y, boolean log) {
if (X.getDimension() != Y.getDimension()) throw new IllegalArgumentException();
this.X = X;
this.Y = Y;
this.log = log;
}
public int getDimension() {
return 1;
}
public double getStatisticValue(int dim) {
double[] xvalues = X.getParameterValues();
double[] yvalues = Y.getParameterValues();
if (log) {
for (int i = 0; i < xvalues.length; i++) {
xvalues[i] = Math.log(xvalues[i]);
yvalues[i] = Math.log(yvalues[i]);
}
}
double meanX = DiscreteStatistics.mean(xvalues);
double meanY = DiscreteStatistics.mean(yvalues);
double stdevX = DiscreteStatistics.stdev(xvalues);
double stdevY = DiscreteStatistics.stdev(yvalues);
double corr = 0;
for (int i = 0; i < xvalues.length; i++) {
double deviateX = xvalues[i] - meanX;
double deviateY = yvalues[i] - meanY;
corr += deviateX*deviateY;
}
corr /= X.getDimension();
corr /= (stdevX*stdevY);
return corr;
}
}