package dr.inference.model; import dr.stats.DiscreteStatistics; /** * @author Simon Greenhill * @author Alexei Drummond */ public class PearsonCorrelation extends Statistic.Abstract { Parameter X, Y; boolean log = false; public PearsonCorrelation(Parameter X, Parameter Y, boolean log) { if (X.getDimension() != Y.getDimension()) throw new IllegalArgumentException(); this.X = X; this.Y = Y; this.log = log; } public int getDimension() { return 1; } public double getStatisticValue(int dim) { double[] xvalues = X.getParameterValues(); double[] yvalues = Y.getParameterValues(); if (log) { for (int i = 0; i < xvalues.length; i++) { xvalues[i] = Math.log(xvalues[i]); yvalues[i] = Math.log(yvalues[i]); } } double meanX = DiscreteStatistics.mean(xvalues); double meanY = DiscreteStatistics.mean(yvalues); double stdevX = DiscreteStatistics.stdev(xvalues); double stdevY = DiscreteStatistics.stdev(yvalues); double corr = 0; for (int i = 0; i < xvalues.length; i++) { double deviateX = xvalues[i] - meanX; double deviateY = yvalues[i] - meanY; corr += deviateX*deviateY; } corr /= X.getDimension(); corr /= (stdevX*stdevY); return corr; } }