/* * ComplexSubstitutionModel.java * * Copyright (C) 2002-2012 Alexei Drummond, Andrew Rambaut & Marc A. Suchard * * This file is part of BEAST. * See the NOTICE file distributed with this work for additional * information regarding copyright ownership and licensing. * * BEAST is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * BEAST is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with BEAST; if not, write to the * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, * Boston, MA 02110-1301 USA */ package dr.app.beagle.evomodel.substmodel; import dr.evolution.datatype.DataType; import dr.inference.model.Parameter; import dr.inference.model.Likelihood; import dr.inference.model.BayesianStochasticSearchVariableSelection; import dr.inference.model.Model; import dr.inference.loggers.LogColumn; import dr.inference.loggers.MatrixEntryColumn; import dr.inference.loggers.NumberColumn; import dr.math.matrixAlgebra.Vector; import java.util.Arrays; /** * @author Marc Suchard */ public class ComplexSubstitutionModel extends GeneralSubstitutionModel implements Likelihood { public ComplexSubstitutionModel(String name, DataType dataType, FrequencyModel freqModel, Parameter parameter) { super(name, dataType, freqModel, parameter, -1); } protected EigenSystem getDefaultEigenSystem(int stateCount) { return new ComplexColtEigenSystem(); } /** * get the complete transition probability matrix for the given distance * * @param distance the expected number of substitutions * @param matrix an array to store the matrix */ public void getTransitionProbabilities(double distance, double[] matrix) { double temp; EigenDecomposition eigen = getEigenDecomposition(); if (eigen == null) { Arrays.fill(matrix, 0.0); return; } double[] Evec = eigen.getEigenVectors(); double[] Eval = eigen.getEigenValues(); double[] EvalImag = new double[stateCount]; System.arraycopy(Eval,stateCount,EvalImag,0,stateCount); double[] Ievc = eigen.getInverseEigenVectors(); double[][] iexp = new double[stateCount][stateCount]; // Eigenvalues and eigenvectors of a real matrix A. // // If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal // and the eigenvector matrix V is orthogonal. I.e. A = V D V^t and V V^t equals // the identity matrix. // // If A is not symmetric, then the eigenvalue matrix D is block diagonal with // the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, // lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns // of V represent the eigenvectors in the sense that A*V = V*D. The matrix // V may be badly conditioned, or even singular, so the validity of the // equation A = V D V^{-1} depends on the conditioning of V. for (int i = 0; i < stateCount; i++) { if (EvalImag[i] == 0) { // 1x1 block temp = Math.exp(distance * Eval[i]); for (int j = 0; j < stateCount; j++) { iexp[i][j] = Ievc[i * stateCount + j] * temp; } } else { // 2x2 conjugate block // If A is 2x2 with complex conjugate pair eigenvalues a +/- bi, then // exp(At) = exp(at)*( cos(bt)I + \frac{sin(bt)}{b}(A - aI)). int i2 = i + 1; double b = EvalImag[i]; double expat = Math.exp(distance * Eval[i]); double expatcosbt = expat * Math.cos(distance * b); double expatsinbt = expat * Math.sin(distance * b); for (int j = 0; j < stateCount; j++) { iexp[i ][j] = expatcosbt * Ievc[i * stateCount + j] + expatsinbt * Ievc[i2 * stateCount + j]; iexp[i2][j] = expatcosbt * Ievc[i2 * stateCount + j] - expatsinbt * Ievc[i * stateCount + j]; } i++; // processed two conjugate rows } } int u = 0; for (int i = 0; i < stateCount; i++) { for (int j = 0; j < stateCount; j++) { temp = 0.0; for (int k = 0; k < stateCount; k++) { temp += Evec[i * stateCount + k] * iexp[k][j]; } matrix[u] = Math.abs(temp); u++; } } } protected int getRateCount(int stateCount) { return (stateCount - 1) * stateCount; } protected void setupRelativeRates(double[] rates) { for (int i = 0; i < rates.length; i++) rates[i] = ratesParameter.getParameterValue(i); } protected void setupQMatrix(double[] rates, double[] pi, double[][] matrix) { int i, j, k = 0; for (i = 0; i < stateCount; i++) { for (j = i + 1; j < stateCount; j++) { matrix[i][j] = rates[k++] * pi[j]; } } // Copy lower triangle in column-order form (transposed) for (j = 0; j < stateCount; j++) { for (i = j + 1; i < stateCount; i++) { matrix[i][j] = rates[k++] * pi[j]; } } } public boolean canReturnComplexDiagonalization() { return true; } protected double getNormalizationValue(double[][] matrix, double[] pi) { if (doNormalization) return super.getNormalizationValue(matrix, pi); return 1.0; } public double getLogLikelihood() { if (BayesianStochasticSearchVariableSelection.Utils.connectedAndWellConditioned(probability,this)) return 0; return Double.NEGATIVE_INFINITY; } /** * Needs to be evaluated before the corresponding data likelihood. * @return */ public boolean evaluateEarly() { return true; } public String prettyName() { return Abstract.getPrettyName(this); } public void setNormalization(boolean doNormalization) { this.doNormalization = doNormalization; } public void makeDirty() { } @Override public boolean isUsed() { return super.isUsed() && isUsed; } public void setUsed() { isUsed = true; } private boolean isUsed = false; private double[] probability; public Model getModel() { return this; } public LogColumn[] getColumns() { return new LogColumn[]{ new LikelihoodColumn(getId()) }; } protected class LikelihoodColumn extends NumberColumn { public LikelihoodColumn(String label) { super(label); } public double getDoubleValue() { return getLogLikelihood(); } } private boolean doNormalization = true; }