package dr.evomodel.substmodel; import dr.evolution.datatype.*; import dr.evomodelxml.substmodel.GeneralSubstitutionModelParser; import dr.inference.loggers.LogColumn; import dr.inference.loggers.NumberColumn; import dr.inference.model.*; import dr.xml.*; /** * <b>A general model of sequence substitution with stochastic variable selection</b>. A general reversible class for any * data type. * * @author Marc Suchard * @version $Id: SVSGeneralSubstitutionModel.java,v 1.37 2006/05/05 03:05:10 msuchard Exp $ */ public class SVSGeneralSubstitutionModel extends GeneralSubstitutionModel implements Likelihood, BayesianStochasticSearchVariableSelection { public SVSGeneralSubstitutionModel(DataType dataType, FrequencyModel freqModel, Parameter parameter, Parameter indicator) { super(dataType, freqModel, parameter, 1); if (indicator != null) { rateIndicator = indicator; addVariable(rateIndicator); } else { rateIndicator = new Parameter.Default(parameter.getDimension(), 1.0); } } protected SVSGeneralSubstitutionModel(String name, DataType dataType, FrequencyModel freqModel, int relativeTo) { super(name, dataType, freqModel, relativeTo); } public Parameter getIndicators() { return rateIndicator; } public boolean validState() { return !updateMatrix || Utils.connectedAndWellConditioned(probability,this); } protected void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) { if (variable == ratesParameter && rateIndicator.getParameterValue(index) == 0) return; // Does not affect likelihood super.handleVariableChangedEvent(variable,index,type); } /** * Get the model. * * @return the model. */ public Model getModel() { return this; } /** * Get the log likelihood. * * @return the log likelihood. */ public double getLogLikelihood() { if (updateMatrix) { if (!Utils.connectedAndWellConditioned(probability,this)) { return Double.NEGATIVE_INFINITY; } } return 0; } /** * Needs to be evaluated before the corresponding data likelihood. * @return */ public boolean evaluateEarly() { return true; } /** * Forces a complete recalculation of the likelihood next time getLikelihood is called */ public void makeDirty() { updateMatrix = true; } /** * @return A detailed name of likelihood for debugging. */ public String prettyName() { return "SVSGeneralSubstitutionModel-connectedness"; } // ************************************************************** // Loggable IMPLEMENTATION // ************************************************************** public LogColumn[] getColumns() { return new LogColumn[]{ new LikelihoodColumn(getId()) }; } protected class LikelihoodColumn extends NumberColumn { public LikelihoodColumn(String label) { super(label); } public double getDoubleValue() { return getLogLikelihood(); } } private double[] probability = null; protected void setupRelativeRates() { for (int i = 0; i < relativeRates.length; i++) { relativeRates[i] = ratesParameter.getParameterValue(i) * rateIndicator.getParameterValue(i); } } void normalize(double[][] matrix, double[] pi) { double subst = 0.0; int dimension = pi.length; //final int dim = rateIndicator.getDimension(); //int sum = 0; //for (int i = 0; i < dim; i++) // sum += rateIndicator.getParameterValue(i); for (int i = 0; i < dimension; i++) subst += -matrix[i][i] * pi[i]; for (int i = 0; i < dimension; i++) { for (int j = 0; j < dimension; j++) { matrix[i][j] = matrix[i][j] / subst; // / sum; } } } @Override public boolean isUsed() { return super.isUsed() && isUsed; } public void setUsed() { isUsed = true; } private boolean isUsed = false; private Parameter rateIndicator; }