package dr.evomodel.substmodel;
import dr.evolution.datatype.*;
import dr.evomodelxml.substmodel.GeneralSubstitutionModelParser;
import dr.inference.loggers.LogColumn;
import dr.inference.loggers.NumberColumn;
import dr.inference.model.*;
import dr.xml.*;
/**
* <b>A general model of sequence substitution with stochastic variable selection</b>. A general reversible class for any
* data type.
*
* @author Marc Suchard
* @version $Id: SVSGeneralSubstitutionModel.java,v 1.37 2006/05/05 03:05:10 msuchard Exp $
*/
public class SVSGeneralSubstitutionModel extends GeneralSubstitutionModel implements Likelihood,
BayesianStochasticSearchVariableSelection {
public SVSGeneralSubstitutionModel(DataType dataType, FrequencyModel freqModel, Parameter parameter,
Parameter indicator) {
super(dataType, freqModel, parameter, 1);
if (indicator != null) {
rateIndicator = indicator;
addVariable(rateIndicator);
} else {
rateIndicator = new Parameter.Default(parameter.getDimension(), 1.0);
}
}
protected SVSGeneralSubstitutionModel(String name, DataType dataType, FrequencyModel freqModel, int relativeTo) {
super(name, dataType, freqModel, relativeTo);
}
public Parameter getIndicators() {
return rateIndicator;
}
public boolean validState() {
return !updateMatrix || Utils.connectedAndWellConditioned(probability,this);
}
protected void handleVariableChangedEvent(Variable variable, int index, Parameter.ChangeType type) {
if (variable == ratesParameter && rateIndicator.getParameterValue(index) == 0)
return; // Does not affect likelihood
super.handleVariableChangedEvent(variable,index,type);
}
/**
* Get the model.
*
* @return the model.
*/
public Model getModel() {
return this;
}
/**
* Get the log likelihood.
*
* @return the log likelihood.
*/
public double getLogLikelihood() {
if (updateMatrix) {
if (!Utils.connectedAndWellConditioned(probability,this)) {
return Double.NEGATIVE_INFINITY;
}
}
return 0;
}
/**
* Needs to be evaluated before the corresponding data likelihood.
* @return
*/
public boolean evaluateEarly() {
return true;
}
/**
* Forces a complete recalculation of the likelihood next time getLikelihood is called
*/
public void makeDirty() {
updateMatrix = true;
}
/**
* @return A detailed name of likelihood for debugging.
*/
public String prettyName() {
return "SVSGeneralSubstitutionModel-connectedness";
}
// **************************************************************
// Loggable IMPLEMENTATION
// **************************************************************
public LogColumn[] getColumns() {
return new LogColumn[]{
new LikelihoodColumn(getId())
};
}
protected class LikelihoodColumn extends NumberColumn {
public LikelihoodColumn(String label) {
super(label);
}
public double getDoubleValue() {
return getLogLikelihood();
}
}
private double[] probability = null;
protected void setupRelativeRates() {
for (int i = 0; i < relativeRates.length; i++) {
relativeRates[i] = ratesParameter.getParameterValue(i) * rateIndicator.getParameterValue(i);
}
}
void normalize(double[][] matrix, double[] pi) {
double subst = 0.0;
int dimension = pi.length;
//final int dim = rateIndicator.getDimension();
//int sum = 0;
//for (int i = 0; i < dim; i++)
// sum += rateIndicator.getParameterValue(i);
for (int i = 0; i < dimension; i++)
subst += -matrix[i][i] * pi[i];
for (int i = 0; i < dimension; i++) {
for (int j = 0; j < dimension; j++) {
matrix[i][j] = matrix[i][j] / subst; // / sum;
}
}
}
@Override
public boolean isUsed() {
return super.isUsed() && isUsed;
}
public void setUsed() {
isUsed = true;
}
private boolean isUsed = false;
private Parameter rateIndicator;
}