package dr.inference.distribution; import dr.inference.model.Parameter; /** * @author Marc A. Suchard */ public class LogisticRegression extends GeneralizedLinearModel { public LogisticRegression(Parameter dependentParam) { //, Parameter independentParam, DesignMatrix designMatrix) { super(dependentParam);//, independentParam, designMatrix); } protected double calculateLogLikelihoodAndGradient(double[] beta, double[] gradient) { return 0; // todo } protected double calculateLogLikelihood(double[] beta) { // logLikelihood calculation for logistic regression throw new RuntimeException("Not yet implemented for optimization"); } public boolean requiresScale() { return false; } protected double calculateLogLikelihood() { // logLikelihood calculation for logistic regression double logLikelihood = 0; double[] xBeta = getXBeta(); for (int i = 0; i < N; i++) { // for each "pseudo"-datum logLikelihood += dependentParam.getParameterValue(i) * xBeta[i] - Math.log(1.0 + Math.exp(xBeta[i])); } return logLikelihood; } public boolean confirmIndependentParameters() { // todo -- check that independent parameters \in {0,1} only return true; } }