package dr.inference.distribution;
import dr.inference.model.Parameter;
/**
* @author Marc A. Suchard
*/
public class LogisticRegression extends GeneralizedLinearModel {
public LogisticRegression(Parameter dependentParam) { //, Parameter independentParam, DesignMatrix designMatrix) {
super(dependentParam);//, independentParam, designMatrix);
}
protected double calculateLogLikelihoodAndGradient(double[] beta, double[] gradient) {
return 0; // todo
}
protected double calculateLogLikelihood(double[] beta) {
// logLikelihood calculation for logistic regression
throw new RuntimeException("Not yet implemented for optimization");
}
public boolean requiresScale() {
return false;
}
protected double calculateLogLikelihood() {
// logLikelihood calculation for logistic regression
double logLikelihood = 0;
double[] xBeta = getXBeta();
for (int i = 0; i < N; i++) {
// for each "pseudo"-datum
logLikelihood += dependentParam.getParameterValue(i) * xBeta[i]
- Math.log(1.0 + Math.exp(xBeta[i]));
}
return logLikelihood;
}
public boolean confirmIndependentParameters() {
// todo -- check that independent parameters \in {0,1} only
return true;
}
}