package lejos.robotics.navigation; import lejos.nxt.Battery; import lejos.robotics.TachoMotor; /* * WARNING: THIS CLASS IS SHARED BETWEEN THE classes AND pccomms PROJECTS. * DO NOT EDIT THE VERSION IN pccomms AS IT WILL BE OVERWRITTEN WHEN THE PROJECT IS BUILT. */ /** * The TachoPilot class is a software abstraction of the Pilot mechanism of a * NXT robot. It contains methods to control robot movements: travel forward or * backward in a straight line or a circular path or rotate to a new direction.<br> * Note: this class will only work with two independently controlled motors to * steer differentially, so it can rotate within its own footprint (i.e. turn on * one spot).<br> * It can be used with robots that have reversed motor design: the robot moves * in the direction opposite to the the direction of motor rotation. Uses the * Motor class, which regulates motor speed using the NXT motor's built in * tachometer.<br> * Some methods optionally return immediately so the thread that called the * method can monitor sensors and call stop() if necessary.<br> * Uses the smoothAcceleration property of Motors to improve motor * synchronization when starting a movement. Example: * <p> * <code><pre> * Pilot pilot = new TachoPilot(2.1f, 4.4f, Motor.A, Motor.C, true); // parameters in inches * pilot.setRobotSpeed(10); // inches per second * pilot.travel(12); // inches * pilot.rotate(-90); // degree clockwise * pilot.travel(-12,true); * while(pilot.isMoving())Thread.yield(); * pilot.rotate(-90); * pilot.rotateTo(270); * pilot.steer(-50,180,true); * while(pilot.isMoving())Thread.yield(); * pilot.steer(100); * try{Thread.sleep(1000);} * catch(InterruptedException e){} * pilot.stop(); * </pre></code> * </p> * * Note: if you are sure you do not want to use any other part of navigation you * can as well use "TachoPilot pilot = new TachoPilot(...)" instead of * "Pilot pilot = new TachoPilot(...)" **/ public class TachoPilot implements Pilot { /** * Left motor. */ protected final TachoMotor _left; /** * Right motor. */ protected final TachoMotor _right; /** * Left motor degrees per unit of travel. */ protected final float _leftDegPerDistance; /** * Right motor degrees per unit of travel. */ protected final float _rightDegPerDistance; /** * Left motor revolutions for 360 degree rotation of robot (motors running * in opposite directions). Calculated from wheel diameter and track width. * Used by rotate() and steer() methods. **/ protected final float _leftTurnRatio; /** * Right motor revolutions for 360 degree rotation of robot (motors running * in opposite directions). Calculated from wheel diameter and track width. * Used by rotate() and steer() methods. **/ protected final float _rightTurnRatio; /** * Speed of robot for moving in wheel diameter units per seconds. Set by * setSpeed(), setMoveSpeed() */ protected float _robotMoveSpeed; /** * Speed of robot for turning in degree per seconds. */ protected float _robotTurnSpeed; /** * Motor speed degrees per second. Used by forward(),backward() and steer(). */ protected int _motorSpeed; /** * Motor rotation forward makes robot move forward if parity == 1. */ private byte _parity; /** * If true, motor speed regulation is turned on. Default = true. */ private boolean _regulating = true; /** * Distance between wheels. Used in steer() and rotate(). */ protected final float _trackWidth; /** * Diameter of left wheel. */ protected final float _leftWheelDiameter; /** * Diameter of right wheel. */ protected final float _rightWheelDiameter; /** * Allocates a TachoPilot object, and sets the physical parameters of the * NXT robot.<br> * Assumes Motor.forward() causes the robot to move forward. * * @param wheelDiameter * Diameter of the tire, in any convenient units (diameter in mm * is usually printed on the tire). * @param trackWidth * Distance between center of right tire and center of left tire, * in same units as wheelDiameter. * @param leftMotor * The left Motor (e.g., Motor.C). * @param rightMotor * The right Motor (e.g., Motor.A). */ public TachoPilot(final float wheelDiameter, final float trackWidth, final TachoMotor leftMotor, final TachoMotor rightMotor) { this(wheelDiameter, trackWidth, leftMotor, rightMotor, false); } /** * Allocates a TachoPilot object, and sets the physical parameters of the * NXT robot.<br> * * @param wheelDiameter * Diameter of the tire, in any convenient units (diameter in mm * is usually printed on the tire). * @param trackWidth * Distance between center of right tire and center of left tire, * in same units as wheelDiameter. * @param leftMotor * The left Motor (e.g., Motor.C). * @param rightMotor * The right Motor (e.g., Motor.A). * @param reverse * If true, the NXT robot moves forward when the motors are * running backward. */ public TachoPilot(final float wheelDiameter, final float trackWidth, final TachoMotor leftMotor, final TachoMotor rightMotor, final boolean reverse) { this(wheelDiameter, wheelDiameter, trackWidth, leftMotor, rightMotor, reverse); } /** * Allocates a TachoPilot object, and sets the physical parameters of the * NXT robot.<br> * * @param leftWheelDiameter * Diameter of the left wheel, in any convenient units (diameter * in mm is usually printed on the tire). * @param rightWheelDiameter * Diameter of the right wheel. You can actually fit * intentionally wheels with different size to your robot. If you * fitted wheels with the same size, but your robot is not going * straight, try swapping the wheels and see if it deviates into * the other direction. That would indicate a small difference in * wheel size. Adjust wheel size accordingly. The minimum change * in wheel size which will actually have an effect is given by * minChange = A*wheelDiameter*wheelDiameter/(1-(A*wheelDiameter) * where A = PI/(moveSpeed*360). Thus for a moveSpeed of 25 * cm/second and a wheelDiameter of 5,5 cm the minChange is about * 0,01058 cm. The reason for this is, that different while sizes * will result in different motor speed. And that is given as an * integer in degree per second. * @param trackWidth * Distance between center of right tire and center of left tire, * in same units as wheelDiameter. * @param leftMotor * The left Motor (e.g., Motor.C). * @param rightMotor * The right Motor (e.g., Motor.A). * @param reverse * If true, the NXT robot moves forward when the motors are * running backward. */ public TachoPilot(final float leftWheelDiameter, final float rightWheelDiameter, final float trackWidth, final TachoMotor leftMotor, final TachoMotor rightMotor, final boolean reverse) { // left _left = leftMotor; _leftWheelDiameter = leftWheelDiameter; _leftTurnRatio = trackWidth / leftWheelDiameter; _leftDegPerDistance = 360 / ((float) Math.PI * leftWheelDiameter); // right _right = rightMotor; _rightWheelDiameter = rightWheelDiameter; _rightTurnRatio = trackWidth / rightWheelDiameter; _rightDegPerDistance = 360 / ((float) Math.PI * rightWheelDiameter); // both _trackWidth = trackWidth; _parity = (byte) (reverse ? -1 : 1); setSpeed(360); } /** * @return left motor. */ public TachoMotor getLeft() { return _left; } /** * @return right motor. */ public TachoMotor getRight() { return _right; } /** * @return tachoCount of left motor. Positive value means motor has moved * the robot forward. */ public int getLeftCount() { return _parity * _left.getTachoCount(); } /** * @return tachoCount of the right motor. Positive value means motor has * moved the robot forward. */ public int getRightCount() { return _parity * _right.getTachoCount(); } /** * @return actual speed of left motor in degrees per second. A negative * value if motor is rotating backwards. Updated every 100 ms. **/ public int getLeftActualSpeed() { return _left.getRotationSpeed(); } /** * @return actual speed of right motor in degrees per second. A negative * value if motor is rotating backwards. Updated every 100 ms. **/ public int getRightActualSpeed() { return _right.getRotationSpeed(); } /** * @return ratio of motor revolutions per 360 degree rotation of the robot. * If your robot has wheels with different size, it is the average. */ public float getTurnRatio() { return (_leftTurnRatio + _rightTurnRatio) / 2.0f; } /** * Sets speed of both motors, as well as moveSpeed and turnSpeed. Only use * if your wheels have the same size. * * @param speed * The wanted speed in degrees per second. */ public void setSpeed(final int speed) { _motorSpeed = speed; _robotMoveSpeed = speed / Math.max(_leftDegPerDistance, _rightDegPerDistance); _robotTurnSpeed = speed / Math.max(_leftTurnRatio, _rightTurnRatio); setSpeed(speed, speed); } private void setSpeed(final int leftSpeed, final int rightSpeed) { _left.regulateSpeed(_regulating); _left.smoothAcceleration(!isMoving()); _right.regulateSpeed(_regulating); _right.smoothAcceleration(!isMoving()); _left.setSpeed(leftSpeed); _right.setSpeed(rightSpeed); } /** * also sets _motorSpeed * * @see lejos.robotics.navigation.Pilot#setMoveSpeed(float) */ public void setMoveSpeed(float speed) { _robotMoveSpeed = speed; _motorSpeed = Math.round(0.5f * speed * (_leftDegPerDistance + _rightDegPerDistance)); setSpeed(Math.round(speed * _leftDegPerDistance), Math.round(speed * _rightDegPerDistance)); } /** * @see lejos.robotics.navigation.Pilot#getMoveSpeed() */ public float getMoveSpeed() { return _robotMoveSpeed; } /** * @see lejos.robotics.navigation.Pilot#getMoveMaxSpeed() */ public float getMoveMaxSpeed() { // it is generally assumed, that the maximum accurate speed of Motor is // 100 degree/second * Voltage return Battery.getVoltage() * 100.0f / Math.max(_leftDegPerDistance, _rightDegPerDistance); // max degree/second divided by degree/unit = unit/second } /** * @see lejos.robotics.navigation.Pilot#setTurnSpeed(float) */ public void setTurnSpeed(float speed) { _robotTurnSpeed = speed; setSpeed(Math.round(speed * _leftTurnRatio), Math.round(speed * _rightTurnRatio)); } /** * @see lejos.robotics.navigation.Pilot#getTurnSpeed() */ public float getTurnSpeed() { return _robotTurnSpeed; } /** * @see lejos.robotics.navigation.Pilot#getTurnMaxSpeed() */ public float getTurnMaxSpeed() { // it is generally assumed, that the maximum accurate speed of Motor is // 100 degree/second * Voltage return Battery.getVoltage() * 100.0f / Math.max(_leftTurnRatio, _rightTurnRatio); // max degree/second divided by degree/unit = unit/second } /** * Moves the NXT robot forward until stop() is called. */ public void forward() { setSpeed(Math.round(_robotMoveSpeed * _leftDegPerDistance), Math .round(_robotMoveSpeed * _rightDegPerDistance)); if (_parity == 1) { fwd(); } else { bak(); } } /** * Moves the NXT robot backward until stop() is called. */ public void backward() { setSpeed(Math.round(_robotMoveSpeed * _leftDegPerDistance), Math .round(_robotMoveSpeed * _rightDegPerDistance)); if (_parity == 1) { bak(); } else { fwd(); } } /** * Rotates the NXT robot through a specific angle. Returns when angle is * reached. Wheels turn in opposite directions producing a zero radius turn.<br> * Note: Requires correct values for wheel diameter and track width. * * @param angle * The wanted angle of rotation in degrees. Positive angle rotate * left (clockwise), negative right. */ public void rotate(final float angle) { rotate(angle, false); } /** * Rotates the NXT robot through a specific angle. Returns when angle is * reached. Wheels turn in opposite directions producing a zero radius turn.<br> * Note: Requires correct values for wheel diameter and track width. * * @param angle * The wanted angle of rotation in degrees. Positive angle rotate * left (clockwise), negative right. * @param immediateReturn * If true this method returns immediately. */ public void rotate(final float angle, final boolean immediateReturn) { setSpeed(Math.round(_robotTurnSpeed * _leftTurnRatio), Math .round(_robotTurnSpeed * _rightTurnRatio)); int rotateAngleLeft = _parity * (int) (angle * _leftTurnRatio); int rotateAngleRight = _parity * (int) (angle * _rightTurnRatio); _left.rotate(-rotateAngleLeft, true); _right.rotate(rotateAngleRight, immediateReturn); if (!immediateReturn) { while (_left.isMoving() || _right.isMoving()) // changed isRotating() to isMoving() as this covers what we // need and alows us to keep the interface small Thread.yield(); } } /** * @return the angle of rotation of the robot since last call to reset of * tacho count; */ public float getAngle() { return _parity * ((_right.getTachoCount() / _rightTurnRatio) - (_left .getTachoCount() / _leftTurnRatio)) / 2.0f; } /** * Stops the NXT robot. */ public void stop() { _left.stop(); _right.stop(); } /** * @return true if the NXT robot is moving. **/ public boolean isMoving() { return _left.isMoving() || _right.isMoving(); } /** * Resets tacho count for both motors. **/ public void reset() { _left.resetTachoCount(); _right.resetTachoCount(); } /** * @return distance traveled since last reset of tacho count. **/ public float getTravelDistance() { float left = _left.getTachoCount() / _leftDegPerDistance; float right = _right.getTachoCount() / _rightDegPerDistance; return _parity * (left + right) / 2.0f; } /** * Moves the NXT robot a specific distance in an (hopefully) straight line.<br> * A positive distance causes forward motion, a negative distance moves * backward. If a drift correction has been specified in the constructor it * will be applied to the left motor. * * @param distance * The distance to move. Unit of measure for distance must be * same as wheelDiameter and trackWidth. **/ public void travel(final float distance) { travel(distance, false); } /** * Moves the NXT robot a specific distance in an (hopefully) straight line.<br> * A positive distance causes forward motion, a negative distance moves * backward. If a drift correction has been specified in the constructor it * will be applied to the left motor. * * @param distance * The distance to move. Unit of measure for distance must be * same as wheelDiameter and trackWidth. * @param immediateReturn * If true this method returns immediately. */ public void travel(final float distance, final boolean immediateReturn) { setSpeed(Math.round(_robotMoveSpeed * _leftDegPerDistance), Math .round(_robotMoveSpeed * _rightDegPerDistance)); _left.rotate((int) (_parity * distance * _leftDegPerDistance), true); _right.rotate((int) (_parity * distance * _rightDegPerDistance), immediateReturn); if (!immediateReturn) { while (_left.isMoving() || _right.isMoving()) // changed isRotating() to isMoving() as this covers what we // need and alows us to keep the interface small Thread.yield(); } } public void steer(final float turnRate) { steer(turnRate, Float.POSITIVE_INFINITY, true); } public void steer(final float turnRate,float angle) { steer(turnRate, angle, false); } public void steer(final float turnRate, final float angle, final boolean immediateReturn) { // TODO: make this work with wheels of different size TachoMotor inside; TachoMotor outside; float rate = turnRate; if (rate < -200) { rate = -200; } if (rate > 200) { rate = 200; } if (rate == 0) { if (angle < 0) { backward(); } else { forward(); } return; } if (turnRate < 0) { inside = _right; outside = _left; rate = -rate; } else { inside = _left; outside = _right; } outside.setSpeed(_motorSpeed); float steerRatio = 1 - rate / 100.0f; inside.setSpeed((int) (_motorSpeed * steerRatio)); if (angle == Integer.MAX_VALUE) // no limit angle for turn { if (_parity == 1) { outside.forward(); } else { outside.backward(); } if (_parity * steerRatio > 0) { inside.forward(); } else { inside.backward(); } return; } float rotAngle = angle * _trackWidth * 2 / (_leftWheelDiameter * (1 - steerRatio)); inside.rotate(_parity * (int) (rotAngle * steerRatio), true); outside.rotate(_parity * (int) rotAngle, immediateReturn); if (immediateReturn) { return; } while (inside.isMoving() || outside.isMoving()) // changed isRotating() to isMoving() as this covers what we need // and alows us to keep the interface small Thread.yield(); inside.setSpeed(outside.getSpeed()); } /* * @return true if either motor actual speed is zero. */ public boolean stalled() { return (0 == _left.getRotationSpeed()) || (0 == _right.getRotationSpeed()); } /** * Motors backward. This is called by forward() and backward(). */ private void bak() { _left.backward(); _right.backward(); } /* * Sets motor speed regulation (default is true).<br> Allows steer() method * to be called by (for example) a line tracker or compass navigator so * direction control is from sensor inputs. * * @param yes Set motor speed regulation on = true or off = false. */ public void regulateSpeed(final boolean yes) { _regulating = yes; _left.regulateSpeed(yes); _right.regulateSpeed(yes); } /** * Motors forward. This is called by forward() and backward(). */ private void fwd() { _left.forward(); _right.forward(); } public void arc(final float radius) { steer(turnRate(radius)); } public void arc(final float radius, final float angle) { steer(turnRate(radius), angle); } public void arc(final float radius, final float angle, final boolean immediateReturn) { steer(turnRate(radius), angle, immediateReturn); } /** * Calculates the turn rate corresponding to the turn radius; <br> * use as the parameter for steer() negative argument means center of turn * is on right, so angle of turn is negative * * @param radius * @return steer() */ private float turnRate(final float radius) { int direction; float radiusToUse; if (radius < 0) { direction = -1; radiusToUse = -radius; } else { direction = 1; radiusToUse = radius; } float ratio = (2 * radiusToUse - _trackWidth) / (2 * radiusToUse + _trackWidth); return (direction * 100 * (1 - ratio)); } public void travelArc(float radius, float distance) { travelArc(radius, distance, false); } public void travelArc(float radius, float distance, boolean immediateReturn) { double angle = (distance * 180) / (Math.PI * radius); arc(radius, (int) angle, immediateReturn); // TODO If Pilot.arc() method // changes to float for // angle, get rid of (int) } }