/*
* Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.transform.wavelet;
import boofcv.core.image.border.BorderType;
import boofcv.factory.transform.wavelet.FactoryWaveletDaub;
import boofcv.struct.wavelet.WaveletDescription;
import boofcv.struct.wavelet.WlCoef_F32;
import boofcv.struct.wavelet.WlCoef_I32;
import org.junit.Test;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;
/**
* @author Peter Abeles
*/
public class TestFactoryWaveletDaub extends CommonFactoryWavelet {
BorderType borderDefault = BorderType.WRAP;
BorderType[] borderTypes = new BorderType[]{BorderType.WRAP,BorderType.REFLECT};
/**
* Sees if the DaubJ transform can reconstruct an image.
*/
@Test
public void transform_daubJ_F32() {
for( int i = 4; i <= 4; i += 2 ) {
WaveletDescription<WlCoef_F32> desc = FactoryWaveletDaub.daubJ_F32(i);
checkEncodeDecode_F32(desc);
}
}
/**
* Sees if the standard DaubJ wavelets have the expected characteristics
*/
@Test
public void daubJ_F32_forward() {
for( int i = 4; i <= 4; i += 2 ) {
// test forward coefficients for the expected properties
WaveletDescription<WlCoef_F32> desc = FactoryWaveletDaub.daubJ_F32(i);
WlCoef_F32 forwardCoef = desc.forward;
double sumScaling = UtilWavelet.sumCoefficients(forwardCoef.scaling);
double sumWavelet = UtilWavelet.sumCoefficients(forwardCoef.wavelet);
assertEquals(Math.sqrt(2),sumScaling,1e-4);
assertEquals(0,sumWavelet,1e-4);
double energyScaling = UtilWavelet.computeEnergy(forwardCoef.scaling);
double energyWavelet = UtilWavelet.computeEnergy(forwardCoef.wavelet);
assertEquals(1,energyScaling,1e-4);
assertEquals(1,energyWavelet,1e-4);
int polyOrder = i/2-1;
checkPolySumToZero(forwardCoef.wavelet, polyOrder,0);
// should coefficients should be orthogonal
checkBiorthogonal_F32(desc);
}
}
@Test
public void transform_biorthogonal_F32() {
for( BorderType type : borderTypes )
{
for( int i = 5; i <= 5; i += 2 ) {
WaveletDescription<WlCoef_F32> desc = FactoryWaveletDaub.biorthogonal_F32(i,type);
checkEncodeDecode_F32(desc);
}
}
}
@Test
public void biorthogonal_F32_forward() {
for( int i = 5; i <= 5; i += 2 ) {
WlCoef_F32 forward = FactoryWaveletDaub.biorthogonal_F32(i,borderDefault).getForward();
double sumScaling = UtilWavelet.sumCoefficients(forward.scaling);
double sumWavelet = UtilWavelet.sumCoefficients(forward.wavelet);
assertEquals(1,sumScaling,1e-4);
assertEquals(0,sumWavelet,1e-4);
double energyScaling = UtilWavelet.computeEnergy(forward.scaling);
double energyWavelet = UtilWavelet.computeEnergy(forward.wavelet);
assertTrue(Math.abs(1-energyScaling) > 1e-4);
assertTrue(Math.abs(1-energyWavelet) > 1e-4);
int polyOrder = i/2-1;
checkPolySumToZero(forward.wavelet, polyOrder,-1);
checkPolySumToZero(forward.scaling, polyOrder,-2);
}
}
@Test
public void transform_biorthogonal_I32() {
for( BorderType type : borderTypes ) {
for( int i = 5; i <= 5; i += 2 ) {
WaveletDescription<WlCoef_I32> desc = FactoryWaveletDaub.biorthogonal_I32(i,type);
checkEncodeDecode_I32(desc);
}
}
}
@Test
public void biorthogonal_I32_forward() {
for( int i = 5; i <= 5; i += 2 ) {
WlCoef_I32 forward = FactoryWaveletDaub.biorthogonal_I32(i,borderDefault).getForward();
int sumScaling = UtilWavelet.sumCoefficients(forward.scaling)/forward.denominatorScaling;
assertEquals(1,sumScaling);
int sumWavelet = UtilWavelet.sumCoefficients(forward.wavelet);
assertEquals(0,sumWavelet);
double energyScaling = UtilWavelet.computeEnergy(forward.scaling,forward.denominatorScaling);
double energyWavelet = UtilWavelet.computeEnergy(forward.wavelet,forward.denominatorWavelet);
assertTrue(Math.abs(1-energyScaling) > 1e-4);
assertTrue(Math.abs(1-energyWavelet) > 1e-4);
int polyOrder = i/2-1;
checkPolySumToZero(forward.wavelet, polyOrder,-1);
checkPolySumToZero(forward.scaling, polyOrder,-2);
}
}
@Test
public void biorthogonal_F32_inverse() {
for( BorderType type : borderTypes ) {
for( int i = 5; i <= 5; i += 2 ) {
WaveletDescription<WlCoef_F32> desc = FactoryWaveletDaub.biorthogonal_F32(i,type );
checkBiorthogonal_F32(desc);
}
}
}
@Test
public void biorthogonal_I32_inverse() {
for( BorderType type : borderTypes ) {
for( int i = 5; i <= 5; i += 2 ) {
WaveletDescription<WlCoef_I32> desc = FactoryWaveletDaub.biorthogonal_I32(i,type);
checkBiorthogonal_I32(desc);
}
}
}
}