/* * Copyright (c) 2011-2013, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.alg.transform.wavelet; import boofcv.core.image.border.BorderType; import boofcv.factory.transform.wavelet.FactoryWaveletDaub; import boofcv.struct.wavelet.WaveletDescription; import boofcv.struct.wavelet.WlCoef_F32; import boofcv.struct.wavelet.WlCoef_I32; import org.junit.Test; import static org.junit.Assert.assertEquals; import static org.junit.Assert.assertTrue; /** * @author Peter Abeles */ public class TestFactoryWaveletDaub extends CommonFactoryWavelet { BorderType borderDefault = BorderType.WRAP; BorderType[] borderTypes = new BorderType[]{BorderType.WRAP,BorderType.REFLECT}; /** * Sees if the DaubJ transform can reconstruct an image. */ @Test public void transform_daubJ_F32() { for( int i = 4; i <= 4; i += 2 ) { WaveletDescription<WlCoef_F32> desc = FactoryWaveletDaub.daubJ_F32(i); checkEncodeDecode_F32(desc); } } /** * Sees if the standard DaubJ wavelets have the expected characteristics */ @Test public void daubJ_F32_forward() { for( int i = 4; i <= 4; i += 2 ) { // test forward coefficients for the expected properties WaveletDescription<WlCoef_F32> desc = FactoryWaveletDaub.daubJ_F32(i); WlCoef_F32 forwardCoef = desc.forward; double sumScaling = UtilWavelet.sumCoefficients(forwardCoef.scaling); double sumWavelet = UtilWavelet.sumCoefficients(forwardCoef.wavelet); assertEquals(Math.sqrt(2),sumScaling,1e-4); assertEquals(0,sumWavelet,1e-4); double energyScaling = UtilWavelet.computeEnergy(forwardCoef.scaling); double energyWavelet = UtilWavelet.computeEnergy(forwardCoef.wavelet); assertEquals(1,energyScaling,1e-4); assertEquals(1,energyWavelet,1e-4); int polyOrder = i/2-1; checkPolySumToZero(forwardCoef.wavelet, polyOrder,0); // should coefficients should be orthogonal checkBiorthogonal_F32(desc); } } @Test public void transform_biorthogonal_F32() { for( BorderType type : borderTypes ) { for( int i = 5; i <= 5; i += 2 ) { WaveletDescription<WlCoef_F32> desc = FactoryWaveletDaub.biorthogonal_F32(i,type); checkEncodeDecode_F32(desc); } } } @Test public void biorthogonal_F32_forward() { for( int i = 5; i <= 5; i += 2 ) { WlCoef_F32 forward = FactoryWaveletDaub.biorthogonal_F32(i,borderDefault).getForward(); double sumScaling = UtilWavelet.sumCoefficients(forward.scaling); double sumWavelet = UtilWavelet.sumCoefficients(forward.wavelet); assertEquals(1,sumScaling,1e-4); assertEquals(0,sumWavelet,1e-4); double energyScaling = UtilWavelet.computeEnergy(forward.scaling); double energyWavelet = UtilWavelet.computeEnergy(forward.wavelet); assertTrue(Math.abs(1-energyScaling) > 1e-4); assertTrue(Math.abs(1-energyWavelet) > 1e-4); int polyOrder = i/2-1; checkPolySumToZero(forward.wavelet, polyOrder,-1); checkPolySumToZero(forward.scaling, polyOrder,-2); } } @Test public void transform_biorthogonal_I32() { for( BorderType type : borderTypes ) { for( int i = 5; i <= 5; i += 2 ) { WaveletDescription<WlCoef_I32> desc = FactoryWaveletDaub.biorthogonal_I32(i,type); checkEncodeDecode_I32(desc); } } } @Test public void biorthogonal_I32_forward() { for( int i = 5; i <= 5; i += 2 ) { WlCoef_I32 forward = FactoryWaveletDaub.biorthogonal_I32(i,borderDefault).getForward(); int sumScaling = UtilWavelet.sumCoefficients(forward.scaling)/forward.denominatorScaling; assertEquals(1,sumScaling); int sumWavelet = UtilWavelet.sumCoefficients(forward.wavelet); assertEquals(0,sumWavelet); double energyScaling = UtilWavelet.computeEnergy(forward.scaling,forward.denominatorScaling); double energyWavelet = UtilWavelet.computeEnergy(forward.wavelet,forward.denominatorWavelet); assertTrue(Math.abs(1-energyScaling) > 1e-4); assertTrue(Math.abs(1-energyWavelet) > 1e-4); int polyOrder = i/2-1; checkPolySumToZero(forward.wavelet, polyOrder,-1); checkPolySumToZero(forward.scaling, polyOrder,-2); } } @Test public void biorthogonal_F32_inverse() { for( BorderType type : borderTypes ) { for( int i = 5; i <= 5; i += 2 ) { WaveletDescription<WlCoef_F32> desc = FactoryWaveletDaub.biorthogonal_F32(i,type ); checkBiorthogonal_F32(desc); } } } @Test public void biorthogonal_I32_inverse() { for( BorderType type : borderTypes ) { for( int i = 5; i <= 5; i += 2 ) { WaveletDescription<WlCoef_I32> desc = FactoryWaveletDaub.biorthogonal_I32(i,type); checkBiorthogonal_I32(desc); } } } }