/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.alg.background.moving; import boofcv.alg.interpolate.InterpolatePixelMB; import boofcv.alg.interpolate.InterpolatePixelS; import boofcv.alg.interpolate.InterpolationType; import boofcv.alg.misc.GImageMiscOps; import boofcv.core.image.FactoryGImageGray; import boofcv.core.image.GImageGray; import boofcv.core.image.border.BorderType; import boofcv.factory.interpolate.FactoryInterpolation; import boofcv.struct.distort.Point2Transform2Model_F32; import boofcv.struct.image.*; import georegression.struct.InvertibleTransform; /** * Implementation of {@link BackgroundMovingGaussian} for {@link ImageGray}. * * @author Peter Abeles */ public class BackgroundMovingGaussian_SB <T extends ImageGray, Motion extends InvertibleTransform<Motion>> extends BackgroundMovingGaussian<T,Motion> { // interpolates the input image protected InterpolatePixelS<T> interpolateInput; // interpolates the background image protected InterpolatePixelMB<Planar<GrayF32>> interpolationBG; // wrappers which provide abstraction across image types protected GImageGray inputWrapper; // storage for multi-band pixel values protected float[] pixelBG = new float[2]; // background is composed of two channels. 0 = mean, 1 = variance Planar<GrayF32> background = new Planar<>(GrayF32.class,1,1,2); /** * Configurations background removal. * * @param learnRate Specifies how quickly the background is updated. 0 = static 1.0 = instant. Try 0.05 * @param threshold Threshold for background. Try 10. * @param transform Used to apply motion model * @param interpType Type of interpolation. BILINEAR recommended for accuracy. NEAREST_NEIGHBOR for speed. . * @param imageType Type of input image. */ public BackgroundMovingGaussian_SB(float learnRate, float threshold, Point2Transform2Model_F32<Motion> transform, InterpolationType interpType, Class<T> imageType) { super(learnRate, threshold, transform, ImageType.single(imageType)); this.interpolateInput = FactoryInterpolation.bilinearPixelS(imageType, BorderType.EXTENDED); this.interpolationBG = FactoryInterpolation.createPixelMB( 0, 255, interpType, BorderType.EXTENDED, ImageType.pl(2, GrayF32.class)); this.interpolationBG.setImage(background); inputWrapper = FactoryGImageGray.create(imageType); } @Override public void initialize(int backgroundWidth, int backgroundHeight, Motion homeToWorld) { background.reshape(backgroundWidth,backgroundHeight); GImageMiscOps.fill(background.getBand(0),0); GImageMiscOps.fill(background.getBand(1),-1); this.homeToWorld.set(homeToWorld); this.homeToWorld.invert(worldToHome); this.backgroundWidth = backgroundWidth; this.backgroundHeight = backgroundHeight; } @Override public void reset() { GImageMiscOps.fill(background.getBand(0),0); GImageMiscOps.fill(background.getBand(1),-1); } @Override protected void updateBackground(int x0, int y0, int x1, int y1, T frame) { transform.setModel(worldToCurrent); interpolateInput.setImage(frame); float minusLearn = 1.0f - learnRate; GrayF32 backgroundMean = background.getBand(0); GrayF32 backgroundVar = background.getBand(1); for (int y = y0; y < y1; y++) { int indexBG = background.startIndex + y*background.stride + x0; for (int x = x0; x < x1; x++, indexBG++ ) { transform.compute(x,y,work); if( work.x >= 0 && work.x < frame.width && work.y >= 0 && work.y < frame.height) { float inputValue = interpolateInput.get(work.x,work.y); float meanBG = backgroundMean.data[indexBG]; float varianceBG = backgroundVar.data[indexBG]; if( varianceBG < 0) { backgroundMean.data[indexBG] = inputValue; backgroundVar.data[indexBG] = initialVariance; } else { float diff = meanBG-inputValue; backgroundMean.data[indexBG] = minusLearn*meanBG + learnRate*inputValue; backgroundVar.data[indexBG] = minusLearn*varianceBG + learnRate*diff*diff; } } } } } @Override protected void _segment(Motion currentToWorld, T frame, GrayU8 segmented) { transform.setModel(currentToWorld); inputWrapper.wrap(frame); for (int y = 0; y < frame.height; y++) { int indexFrame = frame.startIndex + y*frame.stride; int indexSegmented = segmented.startIndex + y*segmented.stride; for (int x = 0; x < frame.width; x++, indexFrame++ , indexSegmented++ ) { transform.compute(x,y,work); if( work.x >= 0 && work.x < background.width && work.y >= 0 && work.y < background.height) { interpolationBG.get(work.x,work.y,pixelBG); float pixelFrame = inputWrapper.getF(indexFrame); float meanBG = pixelBG[0]; float varBG = pixelBG[1]; if( varBG < 0) { segmented.data[indexSegmented] = unknownValue; } else { float diff = meanBG - pixelFrame; float chisq = diff*diff/varBG; if (chisq <= threshold) { segmented.data[indexSegmented] = 0; } else { if( diff > minimumDifference || -diff > minimumDifference ) segmented.data[indexSegmented] = 1; else segmented.data[indexSegmented] = 0; } } } else { // there is no background here. Just mark it as not moving to avoid false positives segmented.data[indexSegmented] = unknownValue; } } } } }