/* * Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved. * * This file is part of BoofCV (http://boofcv.org). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package boofcv.alg.denoise.wavelet; import boofcv.struct.image.GrayF32; import java.util.Arrays; /** * <p> * SureShrink denoises wavelets using a threshold computed by minimizing Stein's Unbiased Risk * Estimate (SURE). In practice a hybrid approach was found to work best where either the Stein * threshold or the universal threshold proposed by VisuShrink is used. * </p> * * <p> * This implementation computes a threshold for each subband. * </p> * * <p> * D. Donoho, L. Johnstone, "Adapting to Unknown Smoothness via Wavelet Shrinkage" * Journal of the American Statistical Association, Vol. 90, No. 432, December 1995, pp. 1200-1224 * </p> * * @author Peter Abeles */ public class DenoiseSureShrink_F32 extends SubbandShrink<GrayF32> { float noiseSigma; public DenoiseSureShrink_F32() { super(new ShrinkThresholdSoft_F32()); } @Override protected Number computeThreshold( GrayF32 subband ) { float coef[] = new float[ subband.width*subband.height ]; UtilDenoiseWavelet.subbandAbsVal(subband,coef); Arrays.sort(coef); float maxThreshold =(float) UtilDenoiseWavelet.universalThreshold(subband,1.0); float N = coef.length; float threshold = maxThreshold; float bestRisk = Float.MAX_VALUE; float sumW = 0; float right = N-2.0f; for( int i = 0; i < coef.length; i++ , right -= 2.0f) { float c = coef[i]/noiseSigma; if( c > maxThreshold ) { break; } float cc = c*c; sumW += cc; float risk = sumW + cc*(N-i-1.0f) + right; if( risk < bestRisk ) { threshold = c; bestRisk = risk; } } return noiseSigma*threshold; } @Override public void denoise(GrayF32 transform , int numLevels ) { int w = transform.width; int h = transform.height; // compute the noise variance using the HH_1 subband noiseSigma = UtilDenoiseWavelet.estimateNoiseStdDev(transform.subimage(w/2,h/2,w,h, null),null); // System.out.println("Noise sigma: "+noiseSigma); performShrinkage(transform,numLevels); } }