/*
* Copyright (c) 2011-2016, Peter Abeles. All Rights Reserved.
*
* This file is part of BoofCV (http://boofcv.org).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package boofcv.alg.denoise.wavelet;
import boofcv.struct.image.GrayF32;
import java.util.Arrays;
/**
* <p>
* SureShrink denoises wavelets using a threshold computed by minimizing Stein's Unbiased Risk
* Estimate (SURE). In practice a hybrid approach was found to work best where either the Stein
* threshold or the universal threshold proposed by VisuShrink is used.
* </p>
*
* <p>
* This implementation computes a threshold for each subband.
* </p>
*
* <p>
* D. Donoho, L. Johnstone, "Adapting to Unknown Smoothness via Wavelet Shrinkage"
* Journal of the American Statistical Association, Vol. 90, No. 432, December 1995, pp. 1200-1224
* </p>
*
* @author Peter Abeles
*/
public class DenoiseSureShrink_F32 extends SubbandShrink<GrayF32> {
float noiseSigma;
public DenoiseSureShrink_F32() {
super(new ShrinkThresholdSoft_F32());
}
@Override
protected Number computeThreshold( GrayF32 subband )
{
float coef[] = new float[ subband.width*subband.height ];
UtilDenoiseWavelet.subbandAbsVal(subband,coef);
Arrays.sort(coef);
float maxThreshold =(float) UtilDenoiseWavelet.universalThreshold(subband,1.0);
float N = coef.length;
float threshold = maxThreshold;
float bestRisk = Float.MAX_VALUE;
float sumW = 0;
float right = N-2.0f;
for( int i = 0; i < coef.length; i++ , right -= 2.0f) {
float c = coef[i]/noiseSigma;
if( c > maxThreshold ) {
break;
}
float cc = c*c;
sumW += cc;
float risk = sumW + cc*(N-i-1.0f) + right;
if( risk < bestRisk ) {
threshold = c;
bestRisk = risk;
}
}
return noiseSigma*threshold;
}
@Override
public void denoise(GrayF32 transform , int numLevels ) {
int w = transform.width;
int h = transform.height;
// compute the noise variance using the HH_1 subband
noiseSigma = UtilDenoiseWavelet.estimateNoiseStdDev(transform.subimage(w/2,h/2,w,h, null),null);
// System.out.println("Noise sigma: "+noiseSigma);
performShrinkage(transform,numLevels);
}
}